Cite

Whittaker VP. How the cholinesterases got their modern names. Chem Biol Interact 2010;187:23-6.10.1016/j.cbi.2010.02.041Search in Google Scholar

Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003;4:131-8.10.1038/nrn1035Search in Google Scholar

Alles GA, Hawes RC. Cholinesterases in the blood of man. J Biol Chem 1940;133:375-90.10.1016/S0021-9258(18)73318-8Search in Google Scholar

Enzyme Nomenclature, Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego (CA): Academic Press Inc.; 1992.Search in Google Scholar

Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS. Molecular characterization of maize acetylcholinesterase: a novel enzyme family in the plant kingdom. Plant Physiol 2005;138:1359-71.10.1104/pp.105.062927Search in Google Scholar

Taylor P, Radić Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 1994;34:281-320.10.1146/annurev.pa.34.040194.001433Search in Google Scholar

Stryer L. Biokemija. Zagreb: Školska knjiga; 1991.Search in Google Scholar

Quin DM. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transitions states. Chem Rev 1987;78:955-79.10.1021/cr00081a005Search in Google Scholar

Soreq H, Seidman S. Acetylcholinesterase - new roles for and old actor. Nat Rev Neurosci 2001;2:294-302.10.1038/35067589Search in Google Scholar

Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active centre gorge generate an enzyme mimic of butyrylcholonesterase? Biochemistry 2001;40:7433-45.10.1021/bi010181xSearch in Google Scholar

Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989;260:625-34.10.1042/bj2600625Search in Google Scholar

Lockridge O, Masson P. Pesticides and susceptible populations: people with butyrylkolinesterase genetic variants may be at risk. Neurotoxicology 2000;21:113-26.Search in Google Scholar

Çokuğras NA. Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 2003;28:54-61.Search in Google Scholar

Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002;110:627-39.10.1016/S0306-4522(01)00613-3Search in Google Scholar

Saez-Valero J, Small DH. Alterd glycosylation of cerebrospinal fluid butyrylcholinesterase in Alzheimer's disease. Brain Res 2001;889:247-50.10.1016/S0006-8993(00)03144-9Search in Google Scholar

Fisher MA. Use of cholinesterase inhibitors in the theraphy of myasthenia gravis. U: Giacobini E, urednik. Cholinesterasee and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 249-62.Search in Google Scholar

Giacobini E. Butyrylcholinesterase: its role in brain function. U: Giacobini E, urednik. Butyrylcholinesterase, its function and inhibitors. London: Martin Dunitz Ltd.; 2003. str. 1-20.Search in Google Scholar

Poewe W, Gauthier S, Aarsland D, Leverenz JB, Barone P, Weintraub D, Tolosa E, Dubois B. Diagnosis and menagment of Parkinson's disease dementia. Int J Clin Pract 2008;62:1581-7.10.1111/j.1742-1241.2008.01869.x265800118822028Search in Google Scholar

Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 2006;95:1177-95.10.1002/jps.2054216639719Search in Google Scholar

Meshorer E, Soreq H. Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 2006;29:216-24.10.1016/j.tins.2006.02.00516516310Search in Google Scholar

Greenfield SA, Zimmermann M, Bond CE. Non-hydrolytic functions of acetylcholinesterase. The significance of Cterminal peptides. FEBS J 2008;275:604-11.10.1111/j.1742-4658.2007.06235.x18205834Search in Google Scholar

Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 2003;278:41141-7.10.1074/jbc.M21024120012869558Search in Google Scholar

Silman I, Sussman J. Structural studies on acetylcholinesterase. U: Giacobini E, urednik. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 9-26.Search in Google Scholar

Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulie J, Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proc Natl Acad Sci USA 1992;89:10827-31.10.1073/pnas.89.22.10827504351438284Search in Google Scholar

Hasin Y, Avidan N, Bercovich D, Korczyn AD, Silman I, Beckmann JS, Sussman JL. Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations. Curr Alzheimer Res 2005;2:207-18.10.2174/156720505358590915974920Search in Google Scholar

Gennari K, Brunner J, Brodbeck U. Tetrameric detergentsoluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J Neurochem 1987;49:12-8.10.1111/j.1471-4159.1987.tb03386.x3585324Search in Google Scholar

Massoulié J, Bon S. The molecular form of cholinesterase and acetylcholinesterase in vertebrates. Ann Rev Neurosci 1982;5:57-106.10.1146/annurev.ne.05.030182.0004216176173Search in Google Scholar

Massoulie J, Bonn S, Perrier N, Falasca C. The C-terminal peptides of acetylcholinesterase: Cellular trafficing, oligomerization and functional ancoring. Chem Biol Interact 2005;157-158:3-14.10.1016/j.cbi.2005.10.002Search in Google Scholar

Thiermann H, Szinicz L, Eyer P, Zilker T, Worek F. Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning. Chem Biol Interact 2005;157-158:345-7.10.1016/j.cbi.2005.10.102Search in Google Scholar

Thiermann H, Szinicz L, Eyer P, Felgenhauer N, Zilker T, Worek F. Lessons to be learnt from organophosphorus pesticide poisoning for the treatment of nerve agent poisoning. Toxicology 2007;233:145-54.10.1016/j.tox.2006.11.056Search in Google Scholar

Reiner E, Šinko G, Škrinjarić-Špoljar M, Simeon-Rudolf V. Comparison of protocols for measuring activities of human blood cholinesterases by the Ellman method. Arh Hig Rada Toksikol 2000;51:13-8.Search in Google Scholar

Thiermann H, Mast U, Klimmek R, Eyer P, Hibler A, Pfab R, Flegenhauer N, Zilker T. Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients. Hum Exp Toxicol 1997;16:473-80.10.1177/096032719701600809Search in Google Scholar

Velan B, Kronman C, Ordentlich A, Flashner Y, Leitner M, Cohen S, Shafferman A. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J 1993;296:649-56.10.1042/bj2960649Search in Google Scholar

Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL. Complete amino acid sequence of human serum cholinesterase. J. Biol Chem 1987;262:549-57.10.1016/S0021-9258(19)75818-9Search in Google Scholar

Jensen FS, Schwartz M, Viby-Mogensen J. Identification of human plasma cholinesterase variants using molecular biological techniques. Acta Anaesthesiol Scand 1995;39:142-9.10.1111/j.1399-6576.1995.tb04033.xSearch in Google Scholar

La Du BN, Bartels CF, Nogueira CP, Hajra A, Lightstone H, Van der Spek A, Lockridge O. Phenotypic and molecular biological analysis of human butyrylcholinesterase variants. Clin Biochem 1990;23:423-31.10.1016/0009-9120(90)90187-YSearch in Google Scholar

Primo-Parmo SL, Bartels CF, Wiersema B, Van der Speck AFL, Innis JW, La Du BN. Characterisation of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene. Am J Hum Genet 1996;58:52-64.Search in Google Scholar

Simeon-Rudolf V, Evans RT. Interlaboratory study into proficiency of attribution of human serum butyrylcholinesterase phenotypes: Reference values of activities and inhibitor numbers. Acta Pharm 2001;51:289-96.Search in Google Scholar

Kovarik Z, Simeon-Rudolf V. An improvement in segregation of human butyrylcholinesterase phenotypes having the fluoride-resistant variants. Arh Hig Rada Toksikol 2003;54:239-44.Search in Google Scholar

Gätke MR, Bundgaard JR, Viby-Mogensen J. Two novel mutations in the BCHE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia. Pharmacogenet Genom 2007;17:995-9.10.1097/FPC.0b013e3282f0664618075469Search in Google Scholar

Podoly E, Shalev DE, Shenhar-Tsarfaty S, Bennett ER, Assayag EB, Wilgus H, Livnah O, Soreq H. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 2009;284:17170-9.10.1074/jbc.M109.004952271935519383604Search in Google Scholar

Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991;253:872-9.10.1126/science.1678899Search in Google Scholar

Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr Sect D 2000;56:1385-94.10.1107/S0907444900010659Search in Google Scholar

Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, Gentry MK, Doctor BP. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Prot Sci 1993;2:366-82.10.1002/pro.5560020309Search in Google Scholar

Taylor P, Radic Z, Hosea NA, Camp S, Marchot P, Berman HA. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol Lett 1995;82-83:453-8.10.1016/0378-4274(95)03575-3Search in Google Scholar

Saxena A, Redman AMG, Jiang X, Lockridge O, Doctor BP. Differences in active-site gorge dimensions of cholinesterase revealed by binding of inhibitors to human butyrylcholinesterase. Chem Biol Interact 1999;119-120:61-9.10.1016/S0009-2797(99)00014-9Search in Google Scholar

Saxena A, Ashani Y, Raveh L, Stevenson D, Patel T, Doctor BP. Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases. Mol Pharmacol 1998;53:112-22.10.1124/mol.53.1.1129443938Search in Google Scholar

Nachon F, Nicolet Y, Viguiea N, Masson P, Fontecilla-Camps JC, Lockridge O. Engineering of a monomeric and lowglycosylated form of human butyrylcholinesterase: Expression, purification, characterization and crystallization. Eur J Biochem 2002;269:630-7.10.1046/j.0014-2956.2001.02692.x11856322Search in Google Scholar

Kolarich D, Weber A, Pabst M, Stadlmann J, Teschner W, Ehrlich H, Schwarz H-P, Altmann F. Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics 2008;8:254-63.10.1002/pmic.20070072018203274Search in Google Scholar

Nicolet Y, Lockridge O, Masson P, Fontecellia-Camps JC, Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 2003;278:41141-7.10.1074/jbc.M21024120012869558Search in Google Scholar

Bourne Y, Taylor P, Bougis PB, Marchot P. Crystal structure of mouse acetylcholinesterase. J Biol Chem 1999;274:2963-70.10.1074/jbc.274.5.29639915834Search in Google Scholar

Nachon F, Masson P, Nicolet Y, Lockridge O, Fontecilla-Camps JC. Comparison of structures of butyrylcholinesterase and acetylcholinesterase. U: Giacobini E, urednik. Butyrylcholinesterase, its function and inhibitors. London: Martin Dunitz Ltd.; 2003. str. 39.Search in Google Scholar

Ordentlich A, Kronman C, Barak D, Stein D, Ariel N, Marcus D, Velan B, Shafferman A. Engineering resistance to aging of phosphylated human acetylcholinesterase - Role of hydrogen bond network in the active center. FEBS Lett 1993;334:215-20.10.1016/0014-5793(93)81714-BSearch in Google Scholar

Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Bichem J 1996;318:833-40.10.1042/bj3180833Search in Google Scholar

Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, Ariel N, Cohen S, Velan B, Shafferman A. Dissection of the human acetylcholinesterase active centre determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem 1993;268:17083-95.10.1016/S0021-9258(19)85305-XSearch in Google Scholar

Radić Z, Pickering NA, Vellom DC, Camp S, Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetylcholinesterase and butyrylcholinesterase inhibitors. Biochemistry 1993;32:12074-84.10.1021/bi00096a0188218285Search in Google Scholar

Goličnik M, Šinko G, Simeon-Rudolf V, Grubič Z, Stojan J. Kinetic model of ethropropazine interaction with horse serum butyrylcholinesterase and its docking into the active site. Arch Biochem Biophys 2002;398:23-31.10.1006/abbi.2001.269711811945Search in Google Scholar

Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulié P. Conversion of acetylcholinesterase to butyrylcholinesterase, modelling and mutagenesis. Proc Natl Acad Sci USA 1992;89:10827-31.10.1073/pnas.89.22.10827504351438284Search in Google Scholar

Radić Z, Reiner E, Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol 1991;39:98-104.Search in Google Scholar

McGuire MC, Nogueira CP, Bartels CF, Lightstone H, Hajra A, Van der Speck AF, Lockridge O, La Du BN. Identification of the structural mutation responsible for the dibucaineresistant (atypical) variant form of human serum butyrylcholinesterase. Proc Natl Acad Sci USA 1989;86:953-7.10.1073/pnas.86.3.9532865972915989Search in Google Scholar

Masson P, Froment M-T, Bartels CF, Lockridge O. Asp70 in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem 1996;235:36-48.10.1111/j.1432-1033.1996.00036.x8631355Search in Google Scholar

Chambers J, Patricia EL. Organophosphates: Chemistry, Fate and Effects. New York (NY): Academic Press, Inc.; 1992.Search in Google Scholar

Jokanović M, Stojiljković MP. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur J Pharmacol 2006;553:10-7.10.1016/j.ejphar.2006.09.05417109842Search in Google Scholar

Taylor P, Kovarik Z, Reiner E, Radić Z. Acetylcholinesterase: converting a vulnerable target to a template for antidotes and detection of inhibitor exposure. Toxicology 2007;233:70-8.10.1016/j.tox.2006.11.061327933017196318Search in Google Scholar

Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM. Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: A mini review. Toxicology 2007;233:31-9.10.1016/j.tox.2006.11.066Search in Google Scholar

Maxwell DM, Saxena A, Gordon RK, Doctor BP. Improvements in scavenger protection against organophosphorus agents by modification of cholinesterases. Chem Biol Interact 1999;119-120:419-28.10.1016/S0009-2797(99)00054-XSearch in Google Scholar

Holmstedt B. Cholinesterase inhibitors: an introduction. U: Giacobini E, urednik. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 1-8.Search in Google Scholar

Giacobini E. Cholinesterase inhibitors: from the Calabar bean to the Alzheimer therapy. U: Giacobini E. urednik. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 181-227.Search in Google Scholar

Katalinić M, Rusak G, Domaćinović Barović J, Šinko G, Jelić D, Antolović R, Kovarik Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur J Med Chem 2010;45:186-92.10.1016/j.ejmech.2009.09.041Search in Google Scholar

Reiner E, Radić Z. Mechanism of action of cholinesterase inhibitor. U: Giacobini E. urednik. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 103-20.Search in Google Scholar

Ripoll DR, Faerman CH, Sussman JL. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc Natl Acad Sci USA 1993;90:5128-32.10.1073/pnas.90.11.5128Search in Google Scholar

Yoshida A, Motulsky AG. A pseudocholinesterase variant (E Cynthiana) associated with elevated plasma enzyme activity. Am J Hum Genet 1969;21:486-98.Search in Google Scholar

Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of bilding blocks. Angew Chem Int Ed 2002;41:1053-7.10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4Search in Google Scholar

Krasiński A, Radić Z, Manetsch R, Raushel J, Taylor P, Sharpless KB, Kolb HC. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J Am Chem Soc 2005;127:6686-92.10.1021/ja043031tSearch in Google Scholar

Brufani M, Filocamo L. Rational design of cholinesterase inhibitors. U: Giacobini E. urednik. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd.; 2000. str. 27-46.Search in Google Scholar

Bosak A. Organofosforni spojevi: klasifikacija i reakcije s enzimima. Arh Hig Rada Toksikol 2006;57:445-57.Search in Google Scholar

Worek F, Thiermann H, Szinicz L, Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem Pharmacol 2004;68:2237-48.10.1016/j.bcp.2004.07.038Search in Google Scholar

Tunek A, Svensson LA. Bambuterol, a carbamate ester prodrug of terbutalin, as inhibitor of cholinesterase in human blood. Drug Metab Dispos 1988;16:759-64.Search in Google Scholar

Kovarik Z, Simeon-Rudolf V. Interaction of human butyrylcholinesterase variants with bambuterol and terbutaline. J Enzym Inhib Med Chem 2004;19:113-7.10.1080/14756360410001667300Search in Google Scholar

Sitar DS. Clinical pharmacokinetics of bambuterol. Clin Pharmacokinet 1996;31:246-56.10.2165/00003088-199631040-00002Search in Google Scholar

Nyberg L, Rosenborg J, Weibull E, Jönsson S, Kennedy BM, Nilsson M. Pharmacokinetics of bambuterol in healthy subjetcs. Br J Clin Pharmacol 1998;45:471-8.10.1046/j.1365-2125.1998.00695.xSearch in Google Scholar

Eto M. Organic and biological chemistry. U: Zweig G, urednik. The organophosphorus pesticides. Cleveland (OH): CRC Press Inc.; 1976. str. 142.Search in Google Scholar

Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of common mechanism of action. Environ Toxicol Pharmacol 2005;19:433-6.10.1016/j.etap.2004.12.048Search in Google Scholar

Costa LG. Current issue in organophosphate toxicology. Clin Chim Acta 2006;366:1-13.10.1016/j.cca.2005.10.008Search in Google Scholar

Popis aktivnih tvari dopuštenih za uporabu u sredstvima za zaštitu bilja u Republici Hrvatskoj. Narodne novine 80/2008.Search in Google Scholar

Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev 2003;22:165-90.10.2165/00139709-200322030-00004Search in Google Scholar

Wiener SW, Hoffman RS. Nerve agents: A comprehensive review. J Intensive Care Med 2004;19:22-37.10.1177/0885066603258659Search in Google Scholar

Delfino RT, Ribeiro TS, Figueroa-Villar JD. Organophosphorus compounds as chemical warfare agents: a review. J Braz Chem Soc 2009;20:407-28.10.1590/S0103-50532009000300003Search in Google Scholar

Kovarik Z, Radić Z, Grgas B, Škrinjarić-Špoljar M, Reiner E, Simeon-Rudolf V. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline. BBA - Protein Struct Mol Enzymol 1999;1433:261-71.10.1016/S0167-4838(99)00124-7Search in Google Scholar

Reiner E, Bosak A, Simeon-Rudolf V. Activity of cholinesterases in human whole blood measured with acetylthiocholine as substrate and ethopropazine as selective inhibitor of plasma butyrylcholinesterase. Arh Hig Rada Toksikol 2004;55:1-4.Search in Google Scholar

Kovarik Z, Simeon-Rudolf V. An improvement in segregation of human butyrylcholinesterase phenotypes having the fluoride-resistant variants. Arh Hig Rada Toksikol 2003;54:239-44.Search in Google Scholar

Faber K. Biotransformations in Organic Chemistry: A Textbook. 5. izd. Berlin Heidelberg: Springer-Verlag; 2004.10.1007/978-3-642-18537-3Search in Google Scholar

Shafferman A, Barak D, Stein D, Kronman C, Velan B, Greig NG, Ordentlich A. Flexibility versus "rigidity" of the functional architecture of AChE active center. Chem Biol Interact 2008;175:166-72.10.1016/j.cbi.2008.03.013256191018471807Search in Google Scholar

Barak D, Ordentlich A, Stein D, Yu Q-S, Greig NH, Shafferman A. Accomodation of physostigmine and its analogues by acetylcholinesterase is dominated by hydrophobic interactions. Biochem J 2009;417:213-22.10.1042/BJ20081276294928318729824Search in Google Scholar

Šinko G, Radić Z, Taylor P, Simeon-Rudolf V, Reiner E. Kinetics of interaction of ethopropazine enantiomers with butyrylcholinesterase and acetylcholinesterase. U: Fisher A, Silman I, Soreq H, Anglister L, Michaelson DM, urednici. Proceedings of the XIth ISCM, Cholinergic Mechanisms: Function and Dysfunction; London: & Taylor Francis; 2004. str. 705-6.10.3109/9780203493878-136Search in Google Scholar

Gazić I, Bosak A, Šinko G, Vinković V, Kovarik. Preparative HPLC separation of bambuterol enantiomers and stereoselective inhibition of human cholinesterases. Anal Bioanal Chem 2006;385:1513-9.10.1007/s00216-006-0566-3Search in Google Scholar

Bosak A, Gazić I, Vinković V. Stereoselective inhibition of human, mouse, and horse cholinesterases by bambuterol enantiomers. Chem Biol Interact 2008;175:192-5.10.1016/j.cbi.2008.04.050Search in Google Scholar

Taylor P, Hosea NA, Tsigelny I, Radić Z, Berman HA. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis. Enantiomer 1997;2:249-60.Search in Google Scholar

Hosea NA, Berman HA, Taylor P. Specificity and orientations of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry 1995;34:11528-36.10.1021/bi00036a028Search in Google Scholar

Bosak A, Primožič I, Oršulić M, Tomić S, Simeon-Rudolf V. Enantiomers of quinuclidin-3-ol derivatives: Resolution and interactions with human cholinesterases. Croat Chem Acta 2005;78:121-8.Search in Google Scholar

šinko G. Enzimske i proteinske metode u pripravi enantiomerno čistih kiralnih spojeva i svojstva nekih biološki aktivnih enantiomera. Arh Hig Rada Toksikol 2005;56:351-61.Search in Google Scholar

RCSB Protein Data Bank [pristup 26. studenoga 2010.]. Dostupno na http://www.pdb.orgSearch in Google Scholar

ESTHER Database [pristup 26. studenoga 2010.]. Dostupno na http://bioweb.ensam.inra.fr/estherSearch in Google Scholar

Ekström FJ, Astot C, Pang Y-P. Novel nerve-agent antidote design based on crystallographic and mass spectrometric analyses of tabun-conjugated acetylcholinesterase in complex with antidotes. Clin Pharmacol Ther 2007;82:282-93.10.1038/sj.clpt.6100151Search in Google Scholar

Ekström FJ, Pang Y-P, Boman M, Artursson E, Akfur C, Börjegren S. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Biochem Pharmacol 2006;72:597-607.10.1016/j.bcp.2006.05.027Search in Google Scholar

Lushington GH, Guo J-X, Hurley MM. Acetylcholinesterase reprised: Molecular modeling with the whole toolkit. Front Med Chem 2010;5:423-56.Search in Google Scholar

Bartolucci C, Perola E, Cellai L, Brufani M, Lamba D. "Back door" opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry 1999;38:5714-9.10.1021/bi982723pSearch in Google Scholar

Alisaraie L, Fels G. Molecular docking study on the "back door" hypothesis for product clearance in acetylcholinesterase. J Mol Model 2006;12:348-54.10.1007/s00894-005-0051-5Search in Google Scholar

Kovarik Z, Radić Z, Taylor P. Site-directed mutagenesis of acetylcholinseterase - a tool for studying structure/function relationship. Period biol 2004;106:289-94.Search in Google Scholar

Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Biochemistry 2004;43:3222-9.10.1021/bi036191aSearch in Google Scholar

Kovarik Z, Radić Z, Berman HA, Taylor P. Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates. Toxicology 2007;233:79-84.10.1016/j.tox.2006.08.032Search in Google Scholar

Saxena A, Maxwell DM, Quinn DM, Radić Z, Taylor P, Doctor BP. Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning. Biochem Pharmacol 1997;54:269-74.10.1016/S0006-2952(97)00180-9Search in Google Scholar

Gibney G, Camp S, Dionne M, MacPhee-Quigley K, Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc Nati Acad Sci USA 1990;87:7546-50.10.1073/pnas.87.19.7546Search in Google Scholar

Bosak A, Gazić I, Vinković V, Kovarik Z. Aminoacids residues involved in stereoselective inhibition of cholinesterases with bambuterol. Arch Biochem Biophys 2008;471:72-6.10.1016/j.abb.2007.12.007Search in Google Scholar

Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner V, Taylor P. Acetylcholinesterase active center and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem J 2003;373:33-40.10.1042/bj20021862Search in Google Scholar

Masson P, Nachon F, Broomfield CA, Lenz DE, Verdier L, Schopfer LM, Lockridge O. A collaborative endeavour to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters. Chem Biol Interact 2008;175:273-80.10.1016/j.cbi.2008.04.005Search in Google Scholar

Kovarik Z, Lucić Vrdoljak A, Berend S, Katalinić M, Kuča K, Musilek K, Radić B. Evaluation of oxime K203 as antidote in tabun poisoning. Arh Hig Rada Toksikol 2009;60:19-26.10.2478/10004-1254-60-2009-1890Search in Google Scholar

Stojiljković MP, Jokanović M. Pyridinium oximes: rationale for their selection as causal antidotes against organophosphate poisonings and current solutions for auto-injectors. Arh Hig Rada Toksikol 2006;57:435-43.Search in Google Scholar

Kalow W, Genest K. A method for the detection of atypical forms of human serum cholinesterase: Determination of dibucaine numbers. Can J Biochem Physiol 1957;35:339-46.10.1139/y57-041Search in Google Scholar

Harris H, Whittaker M. diferential inhibition of human serum cholinesterase with fluoride: Recognition of new phenotypes. Nature 1961;191:3898-904.10.1038/191496a0Search in Google Scholar

Nogueira CP, Bartels CF, McGuire MC, Adkins S, Lubrano T, Rubinstein HM, Lightstone H, Van der Speck AF, Lockridge O, La Du BN. Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase. Am J Hum Gen 1992;51:821-8.Search in Google Scholar

Rubinstein HM, Dietz AA, Lubrano T. E1K, another quantitative variant at cholinesterase locus1. J Mol Genet 1978;15:27-9.Search in Google Scholar

Bartels CF, Jensen FS, Lockridge O, Van der Speck AFL, Rubinstein HM, Lubrano T, La Du BN. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet 1992;50:1086-103.Search in Google Scholar

Rubinstein HM, Dietz AA, Lubrano T, Garry PJ. E1J, a quantitative variant at cholinesterase locus1: Immunological evidence. J Med Genet 1976;13:43-5.10.1136/jmg.13.1.43Search in Google Scholar

Bartels CF, James K, La Du BN. DNA mutation associated with the human butyrylcholinesterase J-variant. Am J Hum Genet 1992;50:1104-14.Search in Google Scholar

Whittaker M, Britten JJ. Plasma cholinesterase variants. Family studies of the E1K gene. Hum Hered 1985;35:364-8.10.1159/000153581Search in Google Scholar

Jensen FS, Bartels CF, La Du BN. Cholinesterases: structure, function, genetics, and cell biology. U: Massoulie J, Bacon F, Bernard E, Chatonnet A, Doctor BP, Quinn DM, urednici. Washington (DC): American Chemical Society; 1992.Search in Google Scholar

Maekawa M, Sudo K, Kanno T, Kotani K, Dey DC, Ishikawa J, Izumi M, Etoh K. Genetic basis of the silent phenotype of serum butyrylcholinesterase in three compound heterozygotes. Clin Chim Acta 1995;235:41-57.10.1016/0009-8981(95)06014-1Search in Google Scholar

Harris H, Whittaker M. Diferential inhibition of human serum cholinesterase with fluoride: recognition of new phenotypes. Nature 1986;191:3898-904.Search in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other