Cite

Dufour N, Rao RP. Secondary metabolites and other small molecules as intercellular pathogenic signals. FEMS Microbiol Lett 2011;314:10-7.10.1111/j.1574-6968.2010.02154.xSearch in Google Scholar

Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001;67:2982-92.10.1128/AEM.67.7.2982-2992.2001Search in Google Scholar

Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum sensing molecule in Candida albicans. Proc Natl Acad Sci USA 2004;101:5048-52.10.1073/pnas.0401416101Search in Google Scholar

Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 2006;20:1150-61.10.1101/gad.1411806Search in Google Scholar

Enjalbert B, Whiteway M. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 2005;4:1203-10.10.1128/EC.4.7.1203-1210.2005Search in Google Scholar

Lo H-J, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997;90:939-49.10.1016/S0092-8674(00)80358-XSearch in Google Scholar

Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol 2008;74:7211-8.10.1128/AEM.01614-08259290218836025Search in Google Scholar

Ernst JF. Transcription factors in Candida albicans environmental control of morphogenesis. Microbiology 2000;146:1763-74.10.1099/00221287-146-8-176310931884Search in Google Scholar

Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 2007;6:2429-36.10.1128/EC.00252-07216825517981993Search in Google Scholar

Oh K-B, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci USA 2001;98:4664-8.10.1073/pnas.0714046983189111274356Search in Google Scholar

Shchepin R, Hornby JM, Burger E, Niessen T, Dussault P, Nickerson KW. Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem Biol 2003;10:743-50.10.1016/S1074-5521(03)00158-3Search in Google Scholar

Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 1969;163:192-4.10.1126/science.163.3863.192Search in Google Scholar

Sugawara F, Strobel GA. Tryptophol a phytotoxin produced by Drechslera nodulosum. Phytochemistry 1987;26:1349-51.10.1016/S0031-9422(00)81810-5Search in Google Scholar

Kosalec I, Pepeljnjak S, Delaforge M, Puel O, Galtier P. Possible toxicity of clinical isoates of Candida albicans. In: Balenović M, editor. Proceedings of the Third Croatian Congress of Microbiology with International Participation; 4-7 Oct 2004. Poreč, Croatia. Zagreb: Hrvatsko mikrobiološko društvo; 2004. p. 115-6.Search in Google Scholar

Laćan G, Magnus V, Šimaga Š, Iskrić S, Hall PJ. Metabolism of tryptophol in higher and lower plants. Plant Physiol 1985;78:447-54.10.1104/pp.78.3.447Search in Google Scholar

Seed JR, Sechelski J. Tryptophol levels in mice injected with pharmacological doses of tryptophol, and the effect of pyrazole and ethanol on these levels. Life Sci 1977;21:1603-10.10.1016/0024-3205(77)90237-5Search in Google Scholar

Cornford EM, Crane PD, Braun LD, Bocash WD, Nyerges AM, Oldendorf WH. Reduction in brain glucose utilization rate after tryptophol (3-indole ethanol) treatment. J Neurochem 1981;36:1758-65.10.1111/j.1471-4159.1981.tb00428.xSearch in Google Scholar

Koster RL, Grekoff JK. The physiological, hemolytic and immunosuppressive effects of possible trypanosomal metabolites in white mice. Bios 1981;52:227-36.Search in Google Scholar

Tanaka K, McConnell B, Niemezura WP, Mower HF. Characterization and mutagenicity of 1-nitrosotryptophol and 6-nitrotryptophol possible genotoxic substances associated with smoking and alcohol consumption. Cancer Lett 1989;44:109-16.10.1016/0304-3835(89)90005-0Search in Google Scholar

Inagaki S, Morimura S, Shigematsu T, Kida K, Akutagawa H. Apoptosis induction by vinegar produced from boiled extract of black soybeans in human monoblastic leukemia U937 cells: Difference in sensitivity to cell toxicity compared to normal lymphocytes. Food Sci Technol Res 2005;11:311-7.10.3136/fstr.11.311Search in Google Scholar

Inagaki S, Morimura S, Gondo K, Tang Y, Akutagawa H, Kida K. Isolation of tryptophol as an apoptosis-inducing component of vinegar produced brom boiled extract of black soybean in human monoblastic leukemia U937 cells. Biosci Biotechnol Biochem 2007;71:371-9.10.1271/bbb.6033617284845Search in Google Scholar

Inagaki S, Morimura S, Tang Y, Akutagawa H, Kida K. Tryptophol induces death receptor (DR) 5-mediated apoptosis in U937 cells. Biosci Biotechnol Biochem 2007;71:2065-8.10.1271/bbb.7008417690453Search in Google Scholar

Kosalec I, Šafranić A, Pepeljnjak S, Bačun-Družina V, Ramić S, Kopjar N. Genotoxicity of tryptophol in a battery of short-term assays on human white blood cells in vitro. Basic Clin Pharmacol Toxicol 2008;102:443-52.10.1111/j.1742-7843.2007.00204.xSearch in Google Scholar

Kosalec I. Toksinogenost i mehanizmi djelovanja virulentnih čimbenika Candida vrsta [Toxicogenicity and mechanisms of action of virulence factors of Candida species] [PhD thesis]. Zagreb: Faculty of Pharmacy and Biochemistry, University of Zagreb; 2006.Search in Google Scholar

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91.10.1016/0014-4827(88)90265-0Search in Google Scholar

Poli P, Buschini A, Spaggiari A, Rizzoli V, Carlo-Stella C, Rossi C. DNA damage by tobacco smoke and some antiblastic drugs evaluated using the comet assay. Toxicol Lett 1999;108:267-76.10.1016/S0378-4274(99)00098-3Search in Google Scholar

Chi-Square, Cramer's V, and Lambda [displayed 20 January 2011]. Available at http://faculty.vassar.edu/lowry/newcs.htmlSearch in Google Scholar

Mitchemmore CL, Chipman JK. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res 1998;399:135-47.10.1016/S0027-5107(97)00252-2Search in Google Scholar

Tice RR, Agurell E, Anderson D. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000;35:206-21.10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-JSearch in Google Scholar

Salopek-Sondi B, Piljac-Žegarac J, Magnus V, Kopjar N. Free radical scavenging activity and DNA damaging potential of auxins IAA and 2-Methyl-IAA evaluated in human neutrophils by the alkaline comet assay. J Biochem Mol Toxicol 2010;24:165-73.10.1002/jbt.20323Search in Google Scholar

Kosalec I, Puel O, Delaforge M, Kopjar N, Antolović R, Jelić D, Matica B, Galtier P, Pepeljnjak S. Isolation and cytotoxicity of low-molecular-weight metabolites of Candida albicans. Front Biosci 2008;13:6893-904.10.2741/3197Search in Google Scholar

Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997;77:517-44.10.1152/physrev.1997.77.2.517Search in Google Scholar

Ni R, Leo MA, Zhao J, Lieber CS. Toxicity of β-carotene and its exacerbation by acetaldehyde in HepG2 cells. Alcohol Alcohol 2001;36:281-5.10.1093/alcalc/36.4.281Search in Google Scholar

Meurman JH, Uittamo J. Oral micro-organisms in the etiology of cancer. Acta Odontol Scand 2008;66:321-6.10.1080/00016350802446527Search in Google Scholar

Darroudi F, Natarajan AT. Metabolic activation of chemicals to mutagenic carcinogens by human hepatoma microsomal extracts in Chinese hamster ovary cells (in vitro). Mutagenesis 1993;8:11-5.10.1093/mutage/8.1.11Search in Google Scholar

Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998;402:185-202.10.1016/S0027-5107(97)00297-2Search in Google Scholar

Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutat Res 2000;468:213-25.10.1016/S1383-5718(00)00051-6Search in Google Scholar

Majer BJ, Mersch-Sundermann V, Darroudi F, Laky B, de Wit K, Knasmüller S. Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat Res 2004;551:153-66.10.1016/j.mrfmmm.2004.02.02215225590Search in Google Scholar

Badawy AAB, Evans M. Alcohol and tryptophan metabolism. Alcohol Alcohol 1974;9:97-115.Search in Google Scholar

Cornford EM, Bocash WD, Braun LD, Crane PD, Oldendorf WH. Rapid distribution of tryptophol (3-indole ethanol) to the brain and other tissues. J Clin Invest 1979;63:1241-8.10.1172/JCI109419372073447842Search in Google Scholar

Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 1998;243:359-66.10.1006/excr.1998.41729743595Search in Google Scholar

Carmichael J, Mitchell JB, Friedman N, Gazdar AF, Russo A. Glutathione and related enzyme activity in human lung cancer cell lines. Br J Cancer 1988;58:437-40.10.1038/bjc.1988.23622467872905163Search in Google Scholar

Speit G, Bonzheim I. Genotoxic and protective effects of hyperbaric oxygen in A549 lung cells. Mutagenesis 2003;18:545-8.10.1093/mutage/geg02814614191Search in Google Scholar

Chipinda I, Ruwona TB, Templeton SP, Siegel PD. Use of the human monocytic leukemia THP-1 cell line and co-incubation with microsomes to identify and differentiate hapten and prohapten sensitizers. Toxicology 2011;280:135-43. DOI:10.1016/j.tox.2010.12.004.10.1016/j.tox.2010.12.00421163322Search in Google Scholar

Baird SK, Reid L, Hampton MB, Gieseg SP. OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochim Biophys Acta 2005;1745:361-9.10.1016/j.bbamcr.2005.07.00116084608Search in Google Scholar

Roggen E, Aufderheide M, Cetin Y, Dearman RJ, Gibbs S, Hermanns I, Kimber I, Regal JF, Rovida C, Warheit DB, Uhlig S, Casati S. The development of novel approaches to the identification of chemical and protein respiratory allergens. Altern Lab Anim 2008;36:591-8.10.1177/026119290803600514Search in Google Scholar

Heyes MP, Chen CY, Major EO, Saito K. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 1997;326:351-6.10.1042/bj3260351Search in Google Scholar

Weiss SJ, LoBuglio AF, Kessler HB. Oxidative mechanisms of monocyte-mediated cytotoxicity. Proc Natl Acad Sci USA 1980;77:584-7.10.1073/pnas.77.1.584Search in Google Scholar

Nakazato T, Sagawa M, Yamato K, Xian M, Yamamoto T, Suematsu M, Ikeda Y, Kizaki M. Myeloperoxidase is a key regulator of oxidative stress mediated apoptosis in myeloid leukemic cells. Clin Cancer Res 2007;13:5436-45.10.1158/1078-0432.CCR-07-0481Search in Google Scholar

Byun J, Mueller DM, Fabjan JS, Heinecke JW. Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein. FEBS Lett 1999;455:243-6.10.1016/S0014-5793(99)00893-5Search in Google Scholar

Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003;11:30-6.10.1016/S0966-842X(02)00002-1Search in Google Scholar

Mavor AL, Thewes S, Hube B. Systemic fungal infections caused by Candida species: Epidemiology, infection process and virulence attributes. Curr Drug Targets 2005;6:863-74.10.2174/13894500577491273516375670Search in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other