Open Access

RHAMM-target peptides inhibit invasion of breast cancer cells


Cite

1. World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 5.2.Search in Google Scholar

2. Siu, Albert L. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine. 2016, 164: 279-96.10.7326/M15-288626757170Search in Google Scholar

3. Kakde D., Jain D., Shrivastava V., Kakde R. and Patil A.T. Cancer therapeutics-opportunities, challenges and advances in drug delivery. Journal of Applied Pharmaceutical Science. 2011, 1 (9): 1-10.Search in Google Scholar

4. Zheleva D. I., Fischer P.M., Zhelev N. Z., Melville J. E., Gavine A-L., and Lane D. P. Design of cell-permeable peptides inhibitors of cyclin D1/ CDK4 complex. M. Nature Biotech. Sh.R.2000, 11: 25-30.Search in Google Scholar

5. Eldar-Finkelman H. and Eisenstein M. Peptide inhibitors targeting protein kinases. Current Pharmaceutical Design. 2009, 15 (21): 2463-2470.10.2174/13816120978868225319601843Search in Google Scholar

6. Rosca E.V., Koskimaki J.E., Rivera C.G., Pandey N.B., Tamiz A.P. and Popel A.S. Antiangiogenic peptides for cancer therapeutics. Current Pharmaceutical Biotechnology.2011, 12 (8): 1101-1116.10.2174/138920111796117300311425621470139Search in Google Scholar

7. McClue S.J., Blake D., Clarke R., Cowan A., Cummings L., Fischer P.M., MacKenzie M., Melville J., Stewart K., Wang S., Zhelev N., Zheleva D., Lane D.P. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer. 2002, 102 (5):463-470.10.1002/ijc.1073812432547Search in Google Scholar

8. Mochly-Rosen D. and Qvit N. Peptide inhibitors of protein-protein interactions: from rational design to the clinic. Chimica Oggi. 2010, 28 (1): 14-16.Search in Google Scholar

9. Smolarczyk R., Cichon T., Graja K., Hucz J., Sochanik A., and Szala S. Antitumor effect of RGD- 4C-GG-D (KLAKLAK) 2 peptide in mouse B16(F10) melanoma model. Acta Biochimica Polonica. 2006, 53 (4): 801-805.10.18388/abp.2006_3309Search in Google Scholar

10. Liang J.F. and Yang V.C. Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg. Med. Chem. Lett. 2005.15: 5071-5075.10.1016/j.bmcl.2005.07.08716168650Search in Google Scholar

11. Akenteva N.P, Shushanov S.S, Kotelnikov A.I. Effects of RHAMM/ HMMR-Selective Peptides on Survival of Breast Cancer Cells. Bulletin of Experimental Biology and Medicine (Russia). 2015, 159 (5): 618-621.Search in Google Scholar

12. Luyt L.G., Turley E.A., Esguerra K.V. Rhamm binding peptides. International Patent WO2011/150495. London Health Sciences Centre Research Inc. 2011.Search in Google Scholar

13. Esguerra K.V., Tolg C., Akentieva N., Price M., Cho C.F., Lewis J.D., McCarthy J.B., Turley E.A., Luyt L.G. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr. Biol. (Camb).2015, 7 (12): 1547-1560.Search in Google Scholar

14. Akentieva N.P., Shushanov S.S. RHAMM (receptor hyaluronan-mediated motility)-target peptides induce apoptosis in prostate cancer cells. Problems in oncology. 2016, 62 (3):512-518.Search in Google Scholar

15. Aina O.H., Sroka T.C., Chen M.L. and Lam K.S. Therapeutic cancer targeting peptides. Biopolymers. 2002, 66 (3): 184-199.10.1002/bip.1025712385037Open DOISearch in Google Scholar

16. Zhasloff, M. Antimicrobial peptides of multicellular organisms. Nature. 2002, 415: 389-395.10.1038/415389a11807545Search in Google Scholar

17. Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev.Microbiol. 2005, 3: 238-250.10.1038/nrmicro109815703760Open DOISearch in Google Scholar

18. Mader J.S., Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs. 2006, 15: 933-946.10.1517/13543784.15.8.93316859395Search in Google Scholar

19. Kim Y.J., Varki, A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj.J. 1997, 14: 569-576.10.1023/A:1018580324971Search in Google Scholar

20. Lindgren M., Rosenthal-Aizman K., Saar, K., Eiriksdottir, E., Jiang, Y., Sassian, M., Ostlund, P., Hallbrink, M., and Langel, U. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem. Pharmacol. 2006, 71: 416-425.10.1016/j.bcp.2005.10.048Search in Google Scholar

21. Liang, J.F., and Yang, V.C. Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg. Med. Chem. Lett. 2005, 15: 5071-5075.10.1016/j.bmcl.2005.07.087Open DOISearch in Google Scholar

22. Steiner H, Hultmark D., Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981; 292 (5820):246-248.10.1038/292246a0Search in Google Scholar

23. Lehrer RI. Primate defensins. Nat. Rev. Microbiol. 2004, 2 (9): 727-738.Search in Google Scholar

24. Hancock REW. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 2001, 1 (3):156-164.10.1016/S1473-3099(01)00092-5Search in Google Scholar

25. Koczulla AR, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs. 2003, 63 (4):389-406.10.2165/00003495-200363040-0000512558461Search in Google Scholar

26. Otvos L. Jr. Antibacterail paptides and proteins with multiple cellular targets. J. Pept. Sci. 2005, 11 (11): 697-706.10.1002/psc.69816059966Open DOISearch in Google Scholar

27. Powers J-PS., Hanckock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003, 24 (11):1681-1691.10.1016/j.peptides.2003.08.02315019199Search in Google Scholar

28. Nicolaou KC, Murphy F., Barluenga S., Ohshima T., Wei H, Xu J., Gray DLF, Baudoin O. Total synthesis of the novel immunosuppressant sanglifehrin A, J.Am.Chem.Soc. 2000, 122: 3830-3838.10.1021/ja994285vSearch in Google Scholar

29. White J.D., Hong J., Robarge LA. Total synthesis of cryptophycins- 1, -3, -4 and -24 (arenastatin A0 and -29, cytotoxic depsipeptides from cyanobacteria of the nostocacae. J. Org. Chem. 1999, 64: 6206-6216.10.1021/jo9907585Search in Google Scholar

30. Xia Z., Smith CD. Total synthesis of dendroamide A, a novel cyclic peptide that reverses multiple drug resistance. J. Org. Chem. 2001, 66:3459-3466.10.1021/jo005783l11348130Search in Google Scholar

31. Boger DL, Zhou J., Borzilleri RM., Nukii S., Castle SL. Synthesis of (9R, 12 S)- and (9S, 12 S)-cycloisodityrosine and their N-methyl derivatives. J. Org. Chem. 1997, 62:2054-2069.10.1021/jo961346o11671510Open DOISearch in Google Scholar

32. Inoue T., Inaba T., Umezawa I., Yuasa M., Itokawa H., Ogura K., Komatsu K, Hara H, Hoshino O. Reglose-lective synthesis of 14-membered blaryl ethers. Total synthesis of RA V11 and deoxybouvardin. Chem. Pharm. Bull. 1995, 43: 1325-1335.10.1248/cpb.43.1325Open DOISearch in Google Scholar

33. Davies J.S. REW. The cyclization of peptides and depsipeptides. J. Peptide Sci. 2003, 9:471-501.10.1002/psc.49112952390Search in Google Scholar

34. Vives, E., Schmidt, J., and Pelegrin, A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim. Biophys. Acta. 2008, 1786: 126-38.10.1016/j.bbcan.2008.03.00118440319Search in Google Scholar

35. Myrberg, H., Zhang, L., Mae, M., and Langel, U. Design of a tumor- homing cell-penetrating peptide. Bioconjug.Chem. 2008, 19: 70-75.10.1021/bc070113918001077Search in Google Scholar

36. Jiang, T., Olson, E.S., Nguyen, Q.T., Roy, M., Jennings, P.A., and Tsien, R.Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA. 2004, 101:17867-72.10.1073/pnas.040819110153931415601762Search in Google Scholar

37. Pipkorn, R., Waldeck, W., Spring, H., Jenne, J.W., and Braun, K. Delivery of substances and their target-specific topical activation. Biochim. Biophys. Acta. 2006, 1758: 606-10.10.1016/j.bbamem.2006.03.03616730647Search in Google Scholar

38. Telmer, P. G.; Tolg, C.; McCarthy, J. B.; and Turley, E. A. How does protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression? Commun. Integr. Biol. 2011, 4(2): 182-185.Search in Google Scholar

39. Laurent, T. C., and Fraser, J. R. E. Hyaluronan. FASEB J. 1992, 6: 2397-2404.10.1096/fasebj.6.7.1563592Search in Google Scholar

40. Laurent, T. C. Biochemistry of Hyaluronan. Acta Otolaryngol Suppl. 1987, 442: 7-24.10.3109/000164887091028333124495Search in Google Scholar

41. Lee, J. Y.; and Spicer, A. P. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr. Opin. Cell Biol. 2000, 12(5): 581-586.10.1016/S0955-0674(00)00135-6Open DOISearch in Google Scholar

42. Tzircotis G, Thorne RF, Isacke CM. Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan binding. J Cell Sci. 2005, 118:5119-5128.10.1242/jcs.02629Open DOISearch in Google Scholar

43. Udabage L, Brownlee GR, Nilsson SK, Brown TJ. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp Cell Res. 2005, 310:205-217.10.1016/j.yexcr.2005.07.026Search in Google Scholar

44. Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J. Biol. Chem. 2002, 277:39703-39712.10.1074/jbc.M204320200Search in Google Scholar

45. Naot, D., Sionov, R.V., and Ish-Shalom, D. CD44: Structure, function, and association with the malignant process. Adv. Cancer Res.1997, 71: 241-319.10.1016/S0065-230X(08)60101-3Search in Google Scholar

46. Turley E.A., Noble P.W., Bourguignon L.Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 2002, 277: 4589-4592.10.1074/jbc.R100038200Search in Google Scholar

47. Adamia S., Maxwell C.A., Pilarski L.M. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005, 5: 3-1410.2174/1568006053005056Search in Google Scholar

48. Hardwick C., Hoare K., Owens R., Hohn H.P., Hook M., Moore D., Cripps V., Austen L., Nance D.M., Turley E.A. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J. Cell. Biol. 1992, 117:1343-1350.10.1083/jcb.117.6.1343Search in Google Scholar

49. Hall C.L., Yang B., Yang X., Zhang S., Turley M., Samuel S., Lange L.A., Wang C., Curpen G.D., Savani R.C., Greenberg A.H., Turley E.A. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995, 82:19-26.10.1016/0092-8674(95)90048-9Search in Google Scholar

50. Maxwell C.A., Keats J.J., Crainie M., Sun X., Yen T., Shibuya E., Hendzel M., Chan G., Pilarski L.M. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol. Cell. 2003,14:2262-2276.10.1091/mbc.E02-07-037719487612808028Open DOISearch in Google Scholar

51. Assmann V., Jenkinson D., Marshall J.F., Hart I.R. The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubule and actin filaments. J. Cell. Sci. 1999, 112 (Pt 22):3943-3954.10.1242/jcs.112.22.3943Search in Google Scholar

52. Joukov V., Groen A.C., Prokhorova T., Gerson R., White E., Rodriguez A., Walter J.C., Livingston D.M. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell. 2006, 127:539-552.10.1016/j.cell.2006.08.053Search in Google Scholar

53. Gust K. M., Hofer M. D., Perner S.R., Chinnaiyan A. M., VaramballyS., Moller P., Rinnab L., Rubin M. A., Greiner J., Schmitt M., Kuefer R., and Ringhoffer M. RHAMM (CD168) is overexpressed at the protein level and may constitute an immunogenic antigen in advanced prostate cancer disease. Neoplasia. 2009, 11(9): 956-963.10.1593/neo.09694Open DOISearch in Google Scholar

54. Wang C., Thor A.D., Moore D.H., Zhao Y., Kerschmann R., Stern R., Watson P.H., and Turley E. A. The overexpression of RHAMM, a hyaluronan- binding protein that regulates ras signalling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer rogression. Clin. Cancer Res.1998, 4(3): 567-576.Search in Google Scholar

55. Greiner J., Ringhoffer M., Taniguchi M., Schmitt A., Kirchner D., Krahn G., Heilmann V., Gschwend J., Bergmann L., Dohner H., and Schmitt M. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chromic myeloid leukemia. Exp. Hematol. 2002, 30(9): 1029-1035.10.1016/S0301-472X(02)00874-3Open DOISearch in Google Scholar

56. Assmann V., Marshall J. F., Fieber C., Hofmann M., and Hart I.R. The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer. J. Cell Sci. 1998, 111: 1685-1694.10.1242/jcs.111.12.16859601098Search in Google Scholar

57. Maxwell C. A., Rasmussen E., Zhan F., Keats J. J., Adarnia S., Strachan E., Crainie M., Walker R., Belch A. R., Pilarski L. M., Barlogie B., Shaughnessy J. Jr., and Reiman T. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood. 2004, 104(4): 1151-1158.10.1182/blood-2003-11-407915105292Search in Google Scholar

58. Crainie M., Belch A. R., Mant M. J., and Pilarski L. M. Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood. 1999, 93(5): 1684-1696.10.1182/blood.V93.5.1684Search in Google Scholar

59. Wang C., Thor A. D., Moore D. H., Zhao Y., Kerschmann R., Stern R., Watson P. H., Turley E. A. The overexpression of RHAMM, a hyaluronan binding protein that regulates ras signalling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer P Progression. Clin. Cancer Res. 1998, 4(3): 567-576.Search in Google Scholar

60. Assman V., Gillett C. E., Poulsom R., Ryder K., Hart I. R., and Hanby A. M. The pattern of expression of the microtubule-binding protein RHAMM/IHAMP im mammary carcinoma suggests a role in the invasive behaviour of tumour cells. J. Pathol. 2001, 195(2): 191-196.Search in Google Scholar

61. Tolg C., Hamilton S. J., Morningstar L., Zhang J., Esguerra K. V., Telmer P. G., Luyt L. G., Harrison R., McCarthy J. B., Turley E. A. RHAMM promotes interphase microtubule instability and mitotic spindle integrity trough MEK1/ERK1, 2 activity. J Biol. Chem., 2010, 285: 26461-26474.10.1074/jbc.M110.121491292407920558733Search in Google Scholar

62. Kurokawa H., Kazuto N., Fukumoto H., Tomonari A., Suzuki T., Saijo N. Alteration of caspase-3 (CPP32/Yama/apopaim) in wild-type MCF-7 breast cancer cells. Oncology Rep.1999, 6: 33-37.10.3892/or.6.1.339864397Search in Google Scholar

63. Rizzardi A.E., Vogel R.I., Koopmeiners J.S., Forster C.L., Marston L.O., Rosener N.K., Akentieva N., Price M.A., Metzger G.J., Warlick C.A., Henriksen J.C., Turley E.A., McCarthy J.B., Schmechel S.C. 2014. Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer. 120 (12), 1800-1809.Search in Google Scholar

64. Sliva D., Rizzo M.T., English D. Phosphatidylinositol 3-kinase and NF-κB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J. Biol. Chem. 2002, 277:3150-7.10.1074/jbc.M10957920011689575Search in Google Scholar

65. Brunet A., Bonni A., Zigmond M.J., et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96:857-68.10.1016/S0092-8674(00)80595-4Open DOISearch in Google Scholar

66. Byeong-Chel Lee, Tae-Hee Lee, Shalom Avraham and Hava Karsenty Avraham. Involvement of the Chemokine Receptor CXCR4 and Its Ligand Stromal Cell-Derived Factor 1α in Breast Cancer Cell Migration Through Human Brain Microvascular Endothelial Cells. Mol. Cancer. Res. 2004, 2: 327-337.10.1158/1541-7786.327.2.6Search in Google Scholar

67. Muller A., Homey B., Soto H., et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001, 410:50-6.10.1038/35065016Search in Google Scholar

68. Soule H.D., Vazguez J., Long, A., Albert S. and Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 1973, 51:1409-1416.10.1093/jnci/51.5.1409Open DOISearch in Google Scholar

69. Levenson A.S., Jordan V.C. MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res. 1997, 57: 3071-3078.Search in Google Scholar

70. Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum-based anti-cancer chemotherapy. Cancer Treat. Rev. 1998, 24: 331-344.10.1016/S0305-7372(98)90056-1Open DOISearch in Google Scholar

71. Maxwell C.A., McCarthy J., Turley E. Cell-surface and mitotic-spindle Rhamm: moonlighting or dual oncogenic functions? J. Cell. Sci. 2008, 121: 925-932.10.1242/jcs.02203818354082Search in Google Scholar

72. Hus I., Kawiak J., Tabarkiewicz J., Radej S., Hoser G., Bojarska-Junak A., Schmitt M., Giannopoulos K., Dmoszynska A., Rolinski J. Immunotherapy with irradiated autologous leukemic cells in patients with B-CLL in early stages. Oncol Rep. 2008, 20(2):443-51.Search in Google Scholar

73. Zlobec I., Terraciano L., Tornullo L., Gunhert U., Vuong T., Jass J.R., Lugli A. Role of Rhamm within the hierarchy of well-established prognostic factors in colorectal cancer. Gur. 2008.10.1136/gut.2007.14119218436576Search in Google Scholar

74. Yamano Y., Uzawa K., Shinozuka K., Fushimi K., Ishigami T., Nomura H., Ogawara K., Shiiba M., Yokoe H., Tanzawa H. Hyaluronan-mediated motility: a target in oral squamous cell carcinoma. Int. J. Oncol. 2008, 32: 10001-9.10.3892/ijo.32.5.1001Search in Google Scholar

75. Tolg C., Poon R., Fodde R., Turley E.A., Alman B.A. Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoids tumor). Oncogene. 2003, 22: 6873-82.10.1038/sj.onc.120681114534534Open DOISearch in Google Scholar

76. Rein D.T., Roehrig K., Schondorf T., Lazar A., Fleisch M., Niederacher D., Bender H.G., Dall P. Expression of the hyaluronan receptor Rhamm in endometrial carcinoma suggests a role in tumor progression and metastasis. J. Cancer Res. Clin. Oncol. 2003, 129: 161-4.10.1007/s00432-003-0415-012712331Search in Google Scholar

77. Sohr S. and Engeland K. Rhamm is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle. 2008, 7 (21): 3448-3460.10.4161/cc.7.21.701418971636Search in Google Scholar

78. Lippman M.E. and Bolan G. Oestrogen-responsive human breast cancer in long-term tissue culture. Nature. 1975, 256:592-593.10.1038/256592a0170527Search in Google Scholar

79. Seals D.F. et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell. 2005, 7:155-165.10.1016/j.ccr.2005.01.00615710328Open DOISearch in Google Scholar

80. Yamaguchi H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell. Biol. 2005, 168: 441-452.10.1083/jcb.200407076217173115684033Search in Google Scholar

81. Weaver A.M. Invadopodia : specialized cell structures for cancer invasion. Clin. Exp. Metastasis. 2006, 23: 97-105.10.1007/s10585-006-9014-116830222Search in Google Scholar

82. Diaz B. et al. Tks5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2009, 2:ra53.10.1126/scisignal.2000368281064019755709Search in Google Scholar

83. Clark E.S. and Weaver A.M. A new role for cortactin in invadopodia: regulation of protease secretion. Eur. J. Cell Biol. 2008, 87:581-590.10.1016/j.ejcb.2008.01.008256693318342393Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics