Open Access

Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation


Cite

1. Weiss EA. Castor, Sesame, and Safflower, Leonard Hill, London, 1971. Search in Google Scholar

2. Moshkin VA. History and Origin of Castor, pp. 6-10. In: Moshkin VA. (ed) Castor. Oxonian Press Pvt. Ltd., New Delhi, 1986.Search in Google Scholar

3. McKeon TA, Hayes DG, Hildebrand DF, Randall J, Weselake RJ (Eds). Industrial Crops. 2016 - Academic Press. 474 pages.Search in Google Scholar

4. Gupta AK, Sinha S. Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresour. Technol. 2007, 98, 1788-1794.10.1016/j.biortech.2006.06.028Open DOISearch in Google Scholar

5. Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWO. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution, J. Hazard. Mater., 2009, 168: 479-483.10.1016/j.jhazmat.2009.02.048Search in Google Scholar

6. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K. Natural organic amendments for improved phytoremediation of polluted Soils: A Review of Recent Progress. Pedosphere, 2016, 26(1), 1-12.10.1016/S1002-0160(15)60017-0Open DOISearch in Google Scholar

7. Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N. Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.), Ind. Crops Prod., 2015, 74: 55-62.10.1016/j.indcrop.2015.05.001Search in Google Scholar

8. Cecchi CGS, Zanchi C. Phytoremediation of soil polluted by nickel using agricultural crops, Environ. Manag., 2005, 36: 675-681.10.1007/s00267-004-0171-116215654Search in Google Scholar

9. Shi G, Cai Q. Cadmium tolerance and accumulation in eight potential energy crops, Biotechnol. Adv. 2009, 27(5): 555-561.10.1016/j.biotechadv.2009.04.00619393309Open DOISearch in Google Scholar

10. Olivares AR, Carrillo-Gonzalez R, Gonzalez-Chavez MDCA, Hernandez, RMS. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production, J. Environ. Manage., 2013, 114: 316-323.10.1016/j.jenvman.2012.10.02323171605Search in Google Scholar

11. de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments, J. Geochem. Explor., 2012, 123: 3-7.10.1016/j.gexplo.2012.04.013Search in Google Scholar

12. Costa ET de S, Guilherme LRG, de Melo EEC, Ribeiro BT, Inacio ESB, Severiano EC, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145: 93-100.10.1007/s12011-011-9164-021826609Search in Google Scholar

13. Bauddh K, Singh R.P. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis L. and Brassica juncea L. in salinity and drought affected cadmium contaminated soil, Ecotox. Environ. Safe., 2012a, 85: 13-22.10.1016/j.ecoenv.2012.08.01922959315Search in Google Scholar

14. Bauddh K, Singh RP. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis L. and Brassica juncea L. from the contaminated soil. Int. J. Phytoremed., 2012b, 14(8): 772-785.10.1080/15226514.2011.619238Search in Google Scholar

15. Kumar A and Gottesfeld P. Lead content in household paints in India. Science of The Total Environment, 2008, 407(1): 333-710.1016/j.scitotenv.2008.08.038Search in Google Scholar

16. Zhuang X, Chen J, Shim H, Bai Z. New advances in plant growth promoting rhizobacteria for bioremediation, Environ. Int. 2007, 33: 406-413.10.1016/j.envint.2006.12.005Open DOISearch in Google Scholar

17. de Souza Costa ET, Guilherme LRG, de Melo EEC, Ribeiro BT, dos Santos B, Inacio E, da Costa Severiano E, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145 (1): 93-100.Search in Google Scholar

18. Bosiacki M, Kleiber T, Kaczmarek J. Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Arch. Environ. Prot., 2013, 39 (3): 47-59.Search in Google Scholar

19. Yi X, Jiang L, Liu Q, Luo M, Chen Y. Seedling emergence and growth of Ricinus communis L. grown in soil contaminated by lead/zinc tailing, In: Proc. 2014 Ann. Cong. Advanced Eng. Tech., CAET, 2014, pp. 445-452.10.1201/b16699-72Open DOISearch in Google Scholar

20. Arnon DI. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. plant physiology 24: 1-15.10.1104/pp.24.1.1Open DOISearch in Google Scholar

21. Bates, L. S., Waldren, R. P., & Teare, I. D. Rapid determination of free proline for water stress studies. Plant and Soil, 1973, 39, 205-207.10.1007/BF00018060Search in Google Scholar

22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein Measurement with the Folin Phenol Reagent J. Biol. Chem. 1951, 193, 265-275.Search in Google Scholar

23. Heath RL, Packer L.. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics 1968,125,189-198.10.1016/0003-9861(68)90654-1Search in Google Scholar

24. Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals, Biotech. Adv., 2011, 29: 645-653.10.1016/j.biotechadv.2011.04.00621557996Search in Google Scholar

25. Leung HM, Yea ZH, Wang MH. Interaction of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils, Environ. Pollut., 2006, 139: 1-8.10.1016/j.envpol.2005.05.00916039023Search in Google Scholar

26. Bhalerao SA. Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils, Int. J. Sci. Nat., 2013, 4(1): 1-15.Search in Google Scholar

27. Cabral L, Soares CRFS, Giachini AJ, Siqueira JO. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications, World J. Microbiol. Biotechnol., 2015, 31(11): 1655-1664.Search in Google Scholar

28. Baldwin BS, Cossar RD. Castor yield in response to planting date at four locations in the south-central United States, Ind. Crops Prod., 2009, 29: 443-448.10.1016/j.indcrop.2008.06.004Search in Google Scholar

29. Oliveira LB, Araujo MSM, Rosa LP, Barata M, Rovere ELL. Analysis of the sustainability of using wastes in the Brazilian power industry, Renew. Sustain. Energy Rev., 2008, 12: 883-890.10.1016/j.rser.2006.10.013Open DOISearch in Google Scholar

30. de Abreu CA, Cantoni M., Coscione AR, Paz-Ferreiro J. Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue, Applied Environ. Soil Science, 2012, Article ID 476821, 7 pages http://dx.doi.org/10.1155/2012/476821.10.1155/2012/476821Open DOISearch in Google Scholar

31. Reddy KR, Matcha SK. Quantifying nitrogen effects of castor bean (Ricinus communis L.) development, growth, and photosynthesis, Ind. Crops Prod., 2010, 31: 185-191. 10.1016/j.indcrop.2009.10.004Open DOISearch in Google Scholar

32. Ogunniyi DS. Castor oil: a vital industrial raw material. Bioresour. Techn., 2006, 97: 1086-1091.10.1016/j.biortech.2005.03.02815919203Open DOISearch in Google Scholar

33. Scholz V, da Silva JN. Prospects and risks of the use of castor oil as a fuel, Biomass Bioenergy . 2008, 32: 95-100.10.1016/j.biombioe.2007.08.004Open DOISearch in Google Scholar

34. Gonzalez-Chavez MCA, Olivares AR, Carrillo-Gonzalez R, Leal ER. Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings, Int. J. Environ. Sci. Tech., 2015, 12: 2263-2272.10.1007/s13762-014-0622-zSearch in Google Scholar

35. Annapurna D, Rajkumar M, Prasad MNV. Potential of Castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth-promoting bacteria: possible cogeneration of economic products. In: Prasad MNV (ed), Bioremediation and Bioeconomy, Amsterdam: Elsevier, 2016, pp. 149-178.Search in Google Scholar

36. Ribeiro, P.R., de Castro, R.D. and Fernandez, L.G.. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Industrial Crops and Products 2016, 91, 358-376.10.1016/j.indcrop.2016.07.010Open DOISearch in Google Scholar

37. Visser EM, Filho DO, Martins MA, Steward BL. Bioethanol production potential from Brazillian biodiesel co-products, Biomass Bioenergy, 2011, 35: 489-494.10.1016/j.biombioe.2010.09.009Search in Google Scholar

38. Severino LS, Auld DL. A framework for the study of the growth and development of castor plant, Ind. Crops Prod., 2013, 46: 25-38. 10.1016/j.indcrop.2013.01.006Open DOISearch in Google Scholar

39. Marter AD. Castor: Markets, Utilization and Prospect, Tropical Product Institute, G152, 1981, p. 55-78.Search in Google Scholar

40. Wiese EA. Oil seed crops, Trop. Agri. Ser., Longman, 1983, pp. 31-53.Search in Google Scholar

41. Glaser LK, Roetheli JC, Thompson AE, Brigham RD, Carlson KD. Castor and Lesquerella: sources of hydroxyl fatty acids. In: 1992 Year book of Agriculture, USDA Office, Publishing Visual Communication, Washnigton, 1993, pp. 111-117.Search in Google Scholar

42. Dole KK, Keskar VR. Dehydration of castor oil, Curr. Sci., 1950, 19(8): 242-243.Search in Google Scholar

43. Osava M. Energy in a castor bean. 2003. http://www.tierramerica.net/english/2003/0526/ianalisis.shtml.Search in Google Scholar

44. Rajkumar M, Freitas H, Influence of metal resistant plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals, Chemosphere, 2008, 71: 834-842.10.1016/j.chemosphere.2007.11.03818164365Search in Google Scholar

45. Barnes D, Baldwin BS, Braasch DA. Degradation of ricin in castor seed meal by temperature and chemical treatment, Ind. Crop Prod., 2009, 29: 509-515.10.1016/j.indcrop.2008.09.006Open DOISearch in Google Scholar

46. FAO (Food and Agriculture Organization). http://faostat.fao.org, 2005, (online) accessed on November 18, 2016. Search in Google Scholar

47. Mendes MG, Santos CDJr, Dias ACC, Bonetti AM. Castor bean (Ricinus communis L.) as a potential environmental bioindicator, Genetics Mol. Res., 2009, 14(4): 12880-12887.10.4238/2015.October.21.826505440Open DOISearch in Google Scholar

48. Bonanno G. Ricinus communis as an element biomonitor of atmospheric pollution in urban areas, Water Air Soil Poll., 2014, 225(2): 1852.Search in Google Scholar

49. Gomes SM de S, de Lima VLA, de Souza AP, do Nascimento JJVR, do Nascimento ES. Cloroplast pigments as indicators of lead stress, Eng. Agri. Jaboticabol., 2014, 34(5): 877-884.Search in Google Scholar

50. Li G, Wan SW, Zhou J, Yang ZY, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels, Ind. Crop Prod., 2010, 31(1): 13-19.10.1016/j.indcrop.2009.07.015Open DOISearch in Google Scholar

51. Sun Y, Niu G, Osuna P, Ganjegunte G, Auld D, Zhao L, Peralta-Videa JR, Gardea-Torresdey JL. Seedling emergence, growth, and leaf mineral nutrition of Ricinus communis L. cultivars irrigated with saline solution, Ind. Crops Prod., 2013, 49: 75-80.10.1016/j.indcrop.2013.04.025Search in Google Scholar

52. Pinheiro HA, Silva JV , Endres L, Ferreira VM, Camara CA, Cabral FF, Oliveira JF, de Carvalho LWT, dos Santos JK and Filho BGS. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions, Ind. Crops Prod., 2008, 27: 385-392.10.1016/j.indcrop.2007.10.003Open DOISearch in Google Scholar

53. Wu XH, Zhang HS, Gang L, Liu XC, Qin P. Ameliorative effect of castor bean (Ricinus communis L.) planting on physic-chemical and biological properties of seashore saline soil, Ecol. Eng., 2012, 38: 97-100.10.1016/j.ecoleng.2011.10.016Search in Google Scholar

54. Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, Zhu G, Wang J, Zhang G, Wang X, Shao C. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil, Ecotoxicol. Environ.Saf., 2016, 133: 57-62.10.1016/j.ecoenv.2016.05.03627414256Search in Google Scholar

55. Chhajro MA, Rizwan MS, Guoyong H, Jun Z, Kubar KA, Hongqing H. Enhanced accumulation of Cd in castor (Ricinus communis L.) by soil-applied chelators, Int. J. Phytoremed., 2015, 18: 664-670.10.1080/15226514.2015.111596526588431Search in Google Scholar

56. Ananthi TAS, Manikandan PNA. Potential of rhizobacteria for improving lead phytoextraction in Ricinus communis. Remediation, 2013, 24(1): 99-10610.1002/rem.21380Search in Google Scholar

57. Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnol., 2012, Adv. 30: 1562-1574.10.1016/j.biotechadv.2012.04.01122580219Open DOISearch in Google Scholar

58. Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils, Biotechnol. Adv., 2011a, 29: 248-258.10.1016/j.biotechadv.2010.12.001Open DOISearch in Google Scholar

59. Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake, J. Hazard. Mater., 2011b, 196: 230-237.10.1016/j.jhazmat.2011.08.034Search in Google Scholar

60. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil, 2002, 245: 35-47.10.1023/A:1020809400075Search in Google Scholar

61. Jones DL, Dennis PG, Owen AG, van Hees PAW, Organic acid behavior in soils-misconceptions and knowledge gaps, Plant Soil, 2003, 248: 31-41.10.1007/978-94-010-0243-1_3Search in Google Scholar

62. Rajkumar M, Ae N, Prasad MNV, Freitas H. Potential of siderophore producing bacteria for improving heavy-metal phytoextraction, Trends Biotechnol., 2010, 28 (3): 142-149.10.1016/j.tibtech.2009.12.002Open DOISearch in Google Scholar

63. Romeiro S, Lagoa AMMA, Furlani PR, de Abreu CA, de Abreu MF, Erismann NM. Lead uptake and tolerance of Ricinus communis L., Braz. J. Plant Physiol., 2006,18 (4): 483-489.Search in Google Scholar

64. Wang C, Li G, Zhang Z, Peng M., Shang Y, Luo R, Chen Y. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers, Biochem. Syst. Ecol., 2013, 51: 301-307.10.1016/j.bse.2013.09.017Open DOISearch in Google Scholar

65. Wu S, Shen C, Yang Z, Lin B, Yuan J. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils, Int. J. Phytoremed., 2016, 18(11): 1148-1154. doi:10.1080/15226514. 2016.1186595.Search in Google Scholar

66. Lu XY, He CQ. Tolerance, uptake and accumulation of cadmium by Ricinus communis L., J. Agro-Environ. Sci., 2005, 24: 674-677.Search in Google Scholar

67. Mahmud R, Inoue N, Kasjima S, Shahenn R. Assessment of potential indigenous plant species for the phytoremediation of arsenic- contaminated areas of Bangladesh, Int. J. Phytoremed., 2008, 10: 119-132.10.1080/15226510801913884Search in Google Scholar

68. Malarkodi M, Krishnaswamy R, Chitdeswari T. Phytoextraction of nickel contaminated soil using castor phytoextractor, J. Plant Nutrition, 2008, 31(2): 219-22910.1080/01904160701853654Search in Google Scholar

69. Huang G, Guo G, Yao S, Zhang N, Hu H. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress, Int. J. Phytoremed., 2016, 18(1): 33-40.Search in Google Scholar

70. Andreazza R, Bortolon L, Pieniz S, Camargo FAO. Use of high-yielding bioenergy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils, Pedosphere, 2013, 23(5): 651-661.10.1016/S1002-0160(13)60057-0Open DOISearch in Google Scholar

71. Pandey VC. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites, Ecol. Eng., 2013, 57: 336-341.10.1016/j.ecoleng.2013.04.054Search in Google Scholar

72. Glick BR. Using soil bacteria to facilitate phytoremediation, Biotechnol. Adv., 2010, 28: 367-374.10.1016/j.biotechadv.2010.02.00120149857Open DOISearch in Google Scholar

73. Makeswari M, Santhi T. Tannin gel derived from Leaves of Ricinus communis as an adsorbentfor the Removal of Cu (II) and Ni (II) ions from aqueous solution. International Journal of Modern Engineering Research 3 (5), 3255-3266.Search in Google Scholar

74. Anastasi U, Sortino O, Cosentino SL, Patane C Seed yield and oil quality of perennial castor bean in a Mediterranean environment. International Journal of Plant Production, 2015, 9(1): 99-116.Search in Google Scholar

75. Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environmental Management, 2016, 174,14-25.10.1016/j.jenvman.2016.02.04726989941Search in Google Scholar

76. Ma, Y., Rajkumar, M., Rocha, I., Oliveira, R.S., Freitas, H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi- metal polluted soils. Front. Plant Sci. 2015, 5, 757.Search in Google Scholar

77. Baishya M, Kalita MC. Phytoremediation of crude oil contaminated soil using two local varieties of castor oil plant (Ricinus communis) of Assam, Int. J. Pharma Bio. Sci., 2015, 6(4): 1173-1182.Search in Google Scholar

78. Schneider J, Bundschuh J, do Nascimento CW. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site, Sci. Total Environ. 2016, 572: 86-97.10.1016/j.scitotenv.2016.07.18527494657Search in Google Scholar

79. Agbogidi, O.M. and Egbuchua, C.O. Heavy metal concentrations of soil contaminated with spent engine oil in Asaba, Delta State. Acta Agronomica Nigeriana 2010, 10 (1): 65-69.Search in Google Scholar

80. Vwioko DE, Anoliefo GO, Fashemi SD. Metal concentration in plant tissues of Ricinus communis L. (Castor oil) grown in soil contaminated with spent lubricating oil, J. Appl. Sci. Environ. Manage., 2006, 10(3): 127-134.Search in Google Scholar

81. Vwioko DE, Fashemi DS. Growth response of Ricinus communis L. (castor oil) in spent lubricating oil polluted soil, J.Applied Sci. Environ. Manage., 2005, 9(2): 73-79.Search in Google Scholar

82 Niu Z, Sun L, Sun, T. Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard, Adv. Environ. Biol., 2009, 3: 255-262.Search in Google Scholar

83 Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X-E. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil, Bioresour. Technol., 2011, 102(23): 11034-11038. 10.1016/j.biortech.2011.09.06721993327Open DOISearch in Google Scholar

84 Li G, Zhang H, Wu X, Shi C, Huang X, Pei-Qin P. Canopy reflectance in two castor bean varieties (Ricinus communis L.) for growth assessment and yield prediction on coastal saline land of Yancheng District, China, Ind. Crops Prod., 2011, 33: 395-402.10.1016/j.indcrop.2010.11.002Open DOISearch in Google Scholar

85. Haung H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X-E. The phytoremediation potential of Bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil, Bioresour. Technol., 2011, 102: 11034-11038.10.1016/j.biortech.2011.09.067Search in Google Scholar

86. Daniela K, Jakub E, Lukas P. Effect of compost amendment on heavy metals transport to plant, MendelNet, 2015, pp. 249-254.Search in Google Scholar

87. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge, Environ. Int., 2009, 35: 142-156.10.1016/j.envint.2008.06.00918691760Search in Google Scholar

88. Bosiacki M, Kleiber T, Kaczmarek J. Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Arch. Environ. Prot., 2013, 39 (3): 47-59.Search in Google Scholar

89. Giordani C, Cecchi S, Zanchi C. Phytoremediation of soil polluted by nickel using agricultural crops, Environ. Manage., 2005,. 36(5): 675-681. 10.1007/s00267-004-0171-116215654Open DOISearch in Google Scholar

90. Wang S, Zhao Y, Guo J, Zhou L. Effects of Cd, Cu and Zn on Ricinus communis L. growth in single element or co-contaminated soils: Pot experiments, Ecol. Eng., 2016, 90: 347-351.10.1016/j.ecoleng.2015.11.044Search in Google Scholar

91. Coscione AR, Berton RS. Barium extraction potential by mustard, sunflower and castor bean, Scientia Agricola 66, 2009, pp. 59-63.10.1590/S0103-90162009000100008Search in Google Scholar

92. Bonanno G. Ricinus communis as an element Biomonitor of atmospheric pollution in urban areas, Water Air Soil Poll., 2014, 225(2): 1852.Search in Google Scholar

93. Costa ET de S, Guilherme LRG, de Melo EEC, Ribeiro BT, Inacio ESB, Severiano EC, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145: 93-100.10.1007/s12011-011-9164-0Search in Google Scholar

94 Martins AE, Pereira MS, Jorgetto AO, Ma UM, Silva RIV, Saeki MJ, Castor GR. The reactive surface of Castor leaf [Ricinus communis L.] powder as a green adsorbent for the removal of heavy metals from natural river water, Applied Surface Sci., 2013, 276: 24-30.10.1016/j.apsusc.2013.02.096Search in Google Scholar

95. Fitz WJ, Wenzel WW. Arsenic transformation in the soil-rhizosphere- plant system, fundamentals and potential application of phytoremediation, J. Biotechnol., 2002, 99: 259-278.10.1016/S0168-1656(02)00218-3Search in Google Scholar

96. Prasad M.N.V. Phytoremediation and biofuels In, E. Lichtfouse (ed.), Sustainable Agriculture Reviews 17, 2015 c Springer International Publishing Switzerland. Page 159-261.10.1007/978-3-319-16742-8_7Search in Google Scholar

97. Prasad, M.N.V. (Ed) Bioremediation and Bioeconomy. 2016 Elsevier, USA. Pages 698. Search in Google Scholar

98. Tripathi V, Edrisi SA, Abhilash PC. Towards the coupling of phytoremediation with bioenergy production Renewable and Sustainable Energy Reviews 2016, 57 1386-1389.10.1016/j.rser.2015.12.116Search in Google Scholar

99 Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation, Renew. Sust. Energy Rev., 2016, 54: 58-73. 10.1016/j.rser.2015.09.078Search in Google Scholar

100 Amouri M, Mohellebi F, Zaid TA, Aziza M. Sustainability assessment of Ricinus communis biodiesel using LCA approach, Clean Techn. Environ. Policy, 2016, DOI 10.1007/s10098-016-1262-4.10.1007/s10098-016-1262-4Open DOISearch in Google Scholar

101 Bauddh K, Singh K, Singh RP. Ricinus communis L. a value added crop for remediation of cadmium contaminated soil, Bull. Environ. Contam. Toxicol., 2016, 96(2): 265-269.Search in Google Scholar

102 Hadi F, Ali N, Fuller MP. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil. Environ. Sci. Pollut. Res. Int., 2016, 23(20): 20408-20430. 10.1007/s11356-016-7230-z27457556Open DOISearch in Google Scholar

103 Rani P, Kumar A, Arya RC. Phytostabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander, J. Soils Sedim., 2016, DOI 10.1007/s11368-016-1466-6.10.1007/s11368-016-1466-6Open DOISearch in Google Scholar

104 Chhajro MA, Rizwan MS, Guoyong H, Jun Z, Kubar KA, Hongqing H. Enhanced accumulation of Cd in castor (Ricinus communis L.) by soil-applied chelators, Int. J. Phytoremed., 2015, 18: 664-670.10.1080/15226514.2015.111596526588431Search in Google Scholar

105 Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, Mahlia TM. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study, Ind. Crops Prod., 2016, 85: 274-286.10.1016/j.indcrop.2016.03.017Search in Google Scholar

106 Srinivasarao Ch, Shanker AK, Kundu S, Reddy S. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols, J. Photochem. Photobiol. B: Biol., 2016, 160: 86-95.10.1016/j.jphotobiol.2016.03.05227101276Search in Google Scholar

107 Wei R, Guo Q, Wen H, Liu C, Yang J, Peters M, Hu J, Zhu G, Zhang H, Tian L, Han X, Ma J, Zhu C, Wan Y. Fractionation of stable cadmium isotopes in the cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum, Scientific Reports 6: Art. No. 24309. 2016, doi:10.1038/srep24309.Search in Google Scholar

108 Hadi F, Ul-Arifeen MZ, Aziz T, Nawab S, Nabi G. Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition, American-Eurasian J. Agric. & Environ. Sci., 2015, 15(6): 1155-1162.Search in Google Scholar

109 Yashim ZI, Agbaji EB, Gimba CE, Idris SO. Phytoremediation potential of Ricinus communis L. (Castor oil plant) in Northern Nigeria, Int. J. Plant Soil Sci., 2016, 10(5): 1-8.10.9734/IJPSS/2016/21680Open DOISearch in Google Scholar

110 Yi X, Jiang L, Chen J, Liu Q, Yi S. Effects of lead/zinc tailings on photosynthetic characteristics and antioxidant enzyme system of Ricinus communis L, Chinese J. Ecol.,2016 35(4): 880-887.Search in Google Scholar

111 Alexopoulou E, Papatheohari Y, Zanetti F, Tsiotas K, Papamichael I, Christou M, Namatov I, Monti A. Comparative studies on several castor (Ricinus communis L.) hybrids: growth, yields, seed oil and biomass characterization, Ind. Crops Prod., 2015, 75B: 8-13.10.1016/j.indcrop.2015.07.015Search in Google Scholar

112 Armendariz J, Lapuerta M, Zavala F, Garcia-Zambrano E, del Carmen Ojeda M. Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel, Ind. Crops Prod., 2015, 77: 484-490.10.1016/j.indcrop.2015.09.023Search in Google Scholar

113 Aziera ZN, Majid NM. Uptake and translocation of zinc and cadmium by Ricinus communis planted in sewage sludge contaminated soil, UKM J, Publisher Penerbit Univeriti Kebangsaan, Malyasia, 2015.Search in Google Scholar

114 Saadawi S, Algadi M, Ammar A, Mohamed S, Alennabi. Phytoremediation effect of Ricinus communis, Malva parviflora and Triticum repens on crude oil contaminated soil. J. Chemical and Pharmaceutical Research, 2015, 7: 782-786.Search in Google Scholar

115. Bauddh K, Singh K, Singh B, Singh RP. Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil, Ecol. Eng. 2015, 84: 640-652.10.1016/j.ecoleng.2015.09.038Search in Google Scholar

116. Bauddh K, Singh RP. Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis, Ecol. Eng., 2015, 74: 93-100.10.1016/j.ecoleng.2014.10.022Search in Google Scholar

117 Al-Rmalli WS, Dhamani AA, Abuein MM, Gleza AA. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), J. Hazard. Mat., 2008, 152: 955-959.10.1016/j.jhazmat.2007.07.11117826904Search in Google Scholar

118 Al‐Harbawy AW, Al‐Mallah MK Production and characterization of biodiesel from seed oil of castor (Ricinus communis L.) plants. International Journal of Science and Technology 2014, 3(9): 508-513.Search in Google Scholar

119 Campbell DN, Na C-I, Rowland DL, Schnell RW, Ferrell JA, Wilkie A. Development of a regional specific crop coefficient (Kc) for castor (Ricinus communis L.) in Florida, USA by using the sap flow method, Ind. Crops Prod., 2015, 74: 465-471.10.1016/j.indcrop.2015.04.006Search in Google Scholar

120. Capuani S, Fernandes DM, Rigon JPG, Ribeiro LC. Combination between acidity amendments and sewage sludge with phosphorus on soil chemical characteristics and on development of Castor bean, Communications in Soil Sci. Plant Analysis, 2015, 46(22): 2901-2912.10.1080/00103624.2015.1104337Search in Google Scholar

121 Grichar WJ, Dotray PA, Trostle CL. Castor (Ricinus communis L.) tol erance to postemergence herbicides and weed control efficacy, Int. J. Agronomy, 2012, Article ID 832749, pp. 5.10.1155/2012/832749Search in Google Scholar

122. Hadi F, Ul-Arifeen MZ, Aziz T, Nawab S, Nabi G. Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition, American-Eurasian J. Agric. & Environ. Sci., 2015, 15(6): 1155-1162. DOI: 10.5829/idosi.aejaes.2015.15.6.94212.10.5829/idosi.aejaes.2015.15.6.94212Open DOISearch in Google Scholar

123. Kang W, Bao J, Zheng J, Hu H, Du J. Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture, Environ. Sci. Pollut., 2015, R22(10): 7726-7734.10.1007/s11356-014-4030-125563834Search in Google Scholar

124. Liu S, Zhu Q, Guan Q, He L, Li W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol., 2015, 183: 93-100.10.1016/j.biortech.2015.02.05625725407Search in Google Scholar

125. Medeiros, A.M.M.S., Machado, F. and Rubim, J.C. 2015. Synthesis and characterization of a magnetic bio-nanocomposite based on magnetic nanoparticles modified by acrylated fatty acids derived from castor oil. European Polymer Journal 71: 152-163.10.1016/j.eurpolymj.2015.07.023Search in Google Scholar

126. Chatzakis MK, Tzanakakis VA, Mara DD, Angelakis AN. Irrigation of castor bean (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: impacts on soil properties and seed yield. Water 2011, 3: 1112-1127.10.3390/w3041112Search in Google Scholar

127. Moncada J, Cardona CA, Rincon LE. Design and analysis of a second and third generation biorefinery: The case of castor bean and microalgae, Bioresour. Technol., 2015, 198: 836-843.10.1016/j.biortech.2015.09.07726457832Search in Google Scholar

128. Ribeiro PR, Zanotti RF, Deflers C, Fernandez LG, Castro R, Ligterink W, Hilhorst HWM. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis, J. Plant Physiol., 2015, 185: 31-39.10.1016/j.jplph.2015.07.00526276402Search in Google Scholar

129. Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Gomes HM, Ribeiro R, de Almeida MV. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides, BioMed Res. Int., Article ID 549863. 2015, 8.10.1155/2015/549863Search in Google Scholar

130. Sanchez N, Sanchez R, Encinar JM , Gonzalez JF, Martinez G. Complete analysis of castor oil methanolysis to obtain biodiesel, Fuel, 2015, 147: 95-99.10.1016/j.fuel.2015.01.062Search in Google Scholar

131. Severino LS, Mendes BSS, Lima GS. Seed coat specific weight and endosperm composition define the oil content of castor seed, Ind. Crops Prod., 2015, 75B: 14-19.10.1016/j.indcrop.2015.06.043Search in Google Scholar

132. Shi G, Xia S, Ye J, Huang Y, Liu C, Zhang Z. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology, Environ. Experim. Bot., 2015, 111: 127-134.10.1016/j.envexpbot.2014.11.008Search in Google Scholar

133 Silva GE , Ramos FT, de Fajra AP, Franca MG. Seeds’ physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis), Environ. Sci. Pollut. Res. Int., 2014, 21(19): 11572-11579.Search in Google Scholar

134 Srivastava SK, Kumar J. Response of castor (Ricinus communis L.) to sulphur under irrigated conditions of Uttar Pradesh, India, Plant Archives, 2015, 15(2): 879-881.Search in Google Scholar

135. Zhang H, Chen X, He C, Liang X, Oh K, Liu X, Lei Y. Use of energy crop (Ricinus communis L.) for phytoextraction of heavy metals assisted with citric acid, I. J. Phytoremed. 2015, 17(7): 632-639.10.1080/15226514.2014.935287Search in Google Scholar

136. Zhang H, Guo Q, Yang J, Shen J, Chen T, Zhu G, Chen H, Shao C. Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation, Ecotoxicol. Environ. Saf. 2015, 120: 184-192.10.1016/j.ecoenv.2015.06.003Search in Google Scholar

137. Atiku FA, Warra AA, Enimola MR. FTIR spectroscopic analysis and fuel properties of wild castor (Ricinus communis L.) seed oil, Open Sci. J. Analyt. Chem., 2014, 1(1): 6-9.Search in Google Scholar

138 Bauddh K. Ricinus communis (castor bean): a multipurpose crop for the sustainable environment, Dream-2047, 2014, 16(11): 31-32. Search in Google Scholar

139 Bauddh K, Singh RP. Studies on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis in presence of vermicompost, chemical fertilizers, biofertilizers and customized fertilizers, Ecol. Eng., 2014, 74: 93-100.10.1016/j.ecoleng.2014.10.022Search in Google Scholar

140. Andreazza R, Bortolon L, Pieniz S, Camargo FAO. Use of high-yielding Bioenergy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils, Pedosphere, 2013, 23(5): 651-661.10.1016/S1002-0160(13)60057-0Open DOISearch in Google Scholar

141. Chen Y, Liu X, Wang M, Yan X. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L., Acta Scientiae Circumstantiae, 2014, 34(9): 2440-2446.Search in Google Scholar

142, Goyal N, Pardha-Saradhi P, Sharma GP. Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ. Monit. Assess., 186: 7491.10.1007/s10661-014-3978-025103212Search in Google Scholar

143. Neto MCL, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG. Dissipation of excess photosynthetic energy contributes to salinity tolerance: A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas, J. Plant Physiol., 2014, 171(1): 23-30.Search in Google Scholar

144. Magriotis ZM, Carvalho MZ, de Sales PF, Alves FC, Resende RF, Saczk AA. Castor bean (Ricinus communis L.) presscake from biodiesel production: an efficient low cost adsorbent for removal of textile dyes, J. Environ. Chem.Eng., 2014, 2(3): 1731-1740.Search in Google Scholar

145. Rodrigues CRF, Silva EN, Moura R, Viegas RA. Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and reduction in water lost by transpiration, Ind. Crops Prod., 2014, 54: 233-239.10.1016/j.indcrop.2013.12.041Search in Google Scholar

146. 146. Rigby NM, McDougall AJ, Needs PW, Selvendran RR (1994) Phloem translocation of a reduced oligogalacturonide in Ricinus communis L. Planta 193:536-541.10.1007/BF02411559Search in Google Scholar

147. Kammerbauer J, Dick T (2000) Monitoring of urban traffic emissions using some physiological indicators in Ricinus communis L. plants. Arch Environ Contam Toxicol 39:161-166.10.1007/s00244001009210871418Search in Google Scholar

148. Zhang H, Guo Q, Yang J, Chen T, Zhu G, Peters M, Wei R, Tian L, Wang C, Tan D, Ma J, Wang G, Wan Y. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems, J. Environ. Sci., 2014, 26(10): 2048-2055.Search in Google Scholar

149. Akande TO, Odunsi AA, Olabode OS, Ojediran TK. Physical and nutrient characterization of raw and processed castor (Ricinus communis L.) seeds in Nigeria. World Journal of Agricultural Sciences, 2012, 8(1): 89-95.Search in Google Scholar

150. Makeswari M, Santhi T Removal of malachite green dye from aqueous solutions onto microwave assisted zinc chloride chemical activated epicarp of Ricinus communis. Journal of Water Resource and Protection Vol.5 No.2 (2013), Article ID: 28297,17.Search in Google Scholar

151. Pal R, Banerjee A, Kundu R. Responses of castor bean (Ricinus communis L.) to lead stress, Proc. Nat. Acad. Sci. India Section B: Biol. Sci., 2013, 83(4): 643-650.Search in Google Scholar

152. Kathi S, Khan AB. Phytoremediation approaches to PAH contaminated soil. Indian Journal of Science and Technology 2011, 4: 56-63.10.17485/ijst/2011/v4i1.15Search in Google Scholar

153. Perdomo FA, Acosto-Osorio AA, Herrera G, Vasco-Leal JF, Mosquera- Artamonov JD, Millan-Malo B, Rodriguez-Garcia ME. Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents, Biomass Bioenergy, 2013, 48: 17-24.10.1016/j.biombioe.2012.10.020Open DOISearch in Google Scholar

154. Severino LS, Auld DL. A framework for the study of the growth and development of castor plant, Ind. Crops Prod., 2013, 46: 25-38.10.1016/j.indcrop.2013.01.006Open DOISearch in Google Scholar

155. Kang W, Zheng J. Ricinus communis, a new copper hyperaccumulator. J. Anhui. Agric Sci. 2011, 39: 1449-1451.Search in Google Scholar

156. Tyagi K, Sharma S, Rashmi R, Kumar S. Study of phyto-chemical constituents of Ricinus communis Linn. under the influence of industrial effluent, J. Pharmacy Res., 2013, 6: 870-873.10.1016/j.jopr.2013.08.005Search in Google Scholar

157. Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or Castor (Ricinus communis), Int. J. Phytoremed., 2013, 15 (3): 283-298.Search in Google Scholar

158. Yasur J, Rani PU. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology, Environ. Sci. Pollut. Res. Int. 2013, 20(12): 8636-8648.Search in Google Scholar

159 Ananthi TAS, Meerabai RS, Krishnasamy R. Potential of Ricinus communis L. and Brassica juncea (L.) Czern. under natural and in duced Pb phytoextraction, Universal J. Environ. Res. Tech., 2012, 2(5): 429-438.Search in Google Scholar

160. Adhikari T and Kumar A. Phytoaccumulation and Tolerance of Riccinus Communis L. to Nickel. International Journal of Phytoremediation. 2012, 14, 481-492.10.1080/15226514.2011.60468822567726Open DOISearch in Google Scholar

161 Bauddh K, Singh RP Growth, Tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental safety, 2012, 85, 13-22.10.1016/j.ecoenv.2012.08.01922959315Search in Google Scholar

162 Carreno LVN, Garcia ITS, Raubach WC, Krolow M, Santos CCG, Probst LFD, Fajardo HV. Nickel-carbon nanocomposites prepared using castor oil as precursor: A novel catalyst for ethanol steam reforming, J. Power Sources, 2009, 188: 527-531.10.1016/j.jpowsour.2008.12.004Search in Google Scholar

163 dos Santos CH, de Oliveira Garcia AL, Calonego JC, Sposito THN, Rigolin IM. Pb-phytoextraction potential by castor beans in soil contaminated (Potencial de fitoextracao de Pb por mamoneiras em solo contaminado,. Semina Cienc. Agrar., 2012, 33(4): 1427-1433.Search in Google Scholar

164. Lavanya C, Murthy IYLN, Nagaraj G, Mukta N. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India, Biomass Bioenergy, 2012, 39,204-209.10.1016/j.biombioe.2012.01.008Search in Google Scholar

165. Melo EEC, Guilherme LRG, Nascimento CWA, Penha HGV. Availability and accumulation of Arsenic in oilseeds grown in contaminated soils, Water, Air, & Soil Pollut., 2012, 223(1): 233-240.Search in Google Scholar

166. Prasad KS, Chuang MC, Ho JAA. Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot, Talanta, 2012, 88: 445-449.10.1016/j.talanta.2011.10.056Search in Google Scholar

167. Severino LS, Auld DL, Baldanzi M, Candido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavany C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA , Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H. A review on the challenges for increased production of Castor, Agronomy Journal. 104(4): 853-880.10.2134/agronj2011.0210Search in Google Scholar

168. Varun M, D’Souza R, Pratas J, Paul MS. Metal contamination of soils and plants associated with the glass industry in North-central India: prospects of phytoremediation, Environ. Sci. Pollut. Res., 2012, 19: 269-281.10.1007/s11356-011-0530-4Open DOISearch in Google Scholar

169. Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Gomes HM, Ribeiro R, de Almeida MV. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides, BioMed Res. Int., Article ID 549863. 2015, 8.10.1155/2015/549863Search in Google Scholar

170. Perea-Flores MJ, Chanona-Perez JJ, Garibay-Febles V, Calderon-Dominguez G, Terres-Rojas E, Mendoza-Perez JA, Bucio- Herrera R. Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis), Ind. Crops Prod., 2011, 34(1): 1057-1065.Search in Google Scholar

171. Goytia-Jimenez MA, Gallegos-Goytia CH, Nunez-Colin CA. Relationship among climatic variables with the morphology and oil content of castor oil plant (Ricinus communis L.) seeds from Chiapas, Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 2011, 18: 42-48.Search in Google Scholar

172. Nazir A, Malik RN, Ajib M, Khan N, Siddiqui MF. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak. J. Bot., 2011, 43(4): 1925-1933Search in Google Scholar

173. Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communisL.) hybrid, Environ. Experim. Bot., 2010, 69(3): 243-249.Search in Google Scholar

174. Bale AT, Adebayo RT, Ogundele DT, Bodunde VT (2013) Fatty acid composition and physicochemical properties of castor (Ricinus communis L.) seed obtained from Malete, Moro local government area, Kwara State. Nigeria. Chemistry and Materials Research 3(12): 11-13.Search in Google Scholar

175. Santhi T, Manonmani S, and Smitha T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of hazardous materials,2010, 179: 178-186.10.1016/j.jhazmat.2010.02.076Search in Google Scholar

176. Shi G and Cai Q Zinc tolerance and accumulation in eight oil crops Journal of Plant Nutrition 2010, 33(7):982-997.10.1080/01904161003728669Open DOISearch in Google Scholar

177. Singh DP, Kumar N, Bhargava SK, Barman SC. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area, J. Environ. Biol., 2010, 31: 421-430.Search in Google Scholar

178. Ye LW, Wood BA, Stroud LJ , Andralojc JP, Raab A, McGrath AS, Feldmann J, Zhao FJ. Arsenic speciation in phloem and xylem exudates of castor bean, Plant Physiol., 2010, 154: 1505-1513.10.1104/pp.110.163261Search in Google Scholar

179. Singh A, Mittal S, Shrivastav a R , Dass S , Srivastava J.N. Biosynthesis of silver nanoparticles using Ricinus communis L. Leaf extract and its antibacterial activity. J. of Nanomaterials and Biostructures 2012, 7:1157 - 1163.Search in Google Scholar

180. Zhi-xin N, Sun LN, Sun TH, Li YS, Wang H. Evaluation of phytoextracting cadmium and lead by sunflower, Ricinus, alfalfa and mustard in hydroponic culture, J. Environ. Sci. (China). 2007, 19: 961-967.10.1016/S1001-0742(07)60158-2Search in Google Scholar

181. Al-Rmalli WS, Dhamani AA, Abuein MM, Gleza AA. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), J. Hazard. Mat., 2008, 152: 955-959.10.1016/j.jhazmat.2007.07.11117826904Search in Google Scholar

182. Figueroa JAL, Wrobel K, Afton S, Caruso JA, Corona JFG, Wrobel K. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico, Chemosphere, 2008, 70: 2084-2091.10.1016/j.chemosphere.2007.08.06617931685Search in Google Scholar

183. Oladoja NA, Aboluwoye OC, Oladimeji YB, Ashogbon AO, Otemuyiwa IO. Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation, Desalination, 2008, 227: 190-203.10.1016/j.desal.2007.06.025Search in Google Scholar

184. Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Malkowski E, Gray L. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil, Env. Monit. Assess., 2008, 137(1-3): 101-109.10.1007/s10661-007-9732-0Search in Google Scholar

185. Lu XY, He CQ. Tolerance, uptake and accumulation of cadmium by Ricinus communis L., J. Agro-Environ. Sci., 2005, 24: 674-677.Search in Google Scholar

186. Stephan WU, Schmidke L, Pich A. Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts, Plant and Soil, 1994, 165:181-188.10.1007/BF00008060Search in Google Scholar

187. Scarpa A, Guerci A. Various uses of the castor oil plant (Ricinus communis L.). A review, J. Ethnopharmacol., 1982, 5: 117-137.10.1016/0378-8741(82)90038-1Search in Google Scholar

188. Saadaoui E, Martin JJ, Tlili N, and Cervantes E. Castor bean (Ricinus communis L.): Diversity, seed oil and uses. pages 19-33. In, Ahmad P Ed. Oil Seed Crops: Yield and Adaptations under Environmental Stress, 2017. John Wiley & Sons, Ltd USA.Search in Google Scholar

189. Chandra R, Kumar V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ Sci Pollut Res, 2017, 24: 2605 - 2619.10.1007/s11356-016-8022-127826829Search in Google Scholar

190. Grison C. Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environ Sci Pollut Res 2015, 22: 5589 - 5591.10.1007/s11356-014-3169-024946705Search in Google Scholar

191. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CW, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR. Agromining: Farming for Metals in the Future? Environ Sci Technol. 2015, 49, 4773−4780.Search in Google Scholar

192. Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 2017, 256: 170-185.10.1016/j.plantsci.2016.11.01628167031Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics