Cite

1. Fleischmann RD, Adams MD, White O, Clayton RA. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269: 496-512.10.1126/science.75428007542800Search in Google Scholar

2. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998; 282: 2012-2018.10.1126/science.282.5396.20129851916Search in Google Scholar

3. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.10.1038/3505706211237011Search in Google Scholar

4. Venter JC, Adams MD, Myers EW, Li PW, et al. The sequence of the human genome. Science 2001; 291: 1304-1351.10.1126/science.105804011181995Search in Google Scholar

5. International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 2004;431: 931-945.10.1038/nature0300115496913Search in Google Scholar

6. Veritas Genetics 2015; Veritas Genetics breaks $1000 whole genome barrier. http://www.veritasgenetics.comSearch in Google Scholar

7. Lu H, Giordano F, Ning Z. Oxford nanopore minion sequencing and genome assembly. Genomics, Proteomics & Bioinformatics, 2016; 14: 265-279.10.1016/j.gpb.2016.05.004509377627646134Open DOISearch in Google Scholar

8. Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VG, McHardy AC, Nederbragt AJ Pope PB. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Scientific Reports 2016; 6: 25373.10.1038/srep25373486059127156482Search in Google Scholar

9. Regalado M. DNA App store: an online store for information about your genes. MIT Technology Review, 2016; Mar/Apr 10 Breakthrough Technologies edition.Search in Google Scholar

10. AncestryDNA. Reveal where your ancestors came from. 2016. https://www.ancestry.co.uk/dna/?geo_a=r&geo_s=us&-geo_t=uk&geo_v=2.0.0&o_iid=64404&o_lid=64404&o_sch=Web+PropertySearch in Google Scholar

11. de Freitasa RCC, Bortolina RH, Lopesa MB, Hirata MH, Hirata RDC, Silbigera VN, Luchessia AD. Integrated analysis of miRNA and mRNA gene expression microarrays: Influence on platelet reactivity, clopidogrel response and drug-induced toxicity. Gene 2016;593: 172-178.10.1016/j.gene.2016.08.02827543010Search in Google Scholar

12. Viveros ME, Areán C, Gutiérrez S, Vázquez S, Cardiel MH, Taboada A, Marín G, Solorio R, García N. Evaluation of clopidogrel response variability and identification of the CYP2C19 polymorphism in Mexican patients. Arch Cardiol Mex. 2016; 86: 297-304.10.1016/j.acmx.2016.01.00726971130Search in Google Scholar

13. Good Start Genetics, 2015. https://www.goodstartgenetics.com/ Herbicide tolerant canola, but not GMO.Search in Google Scholar

14. Steinberg G, Scott A, Honcz J, Spettell C, Pradhan S, Reducing Metabolic Syndrome Risk Using a Personalized Wellness Program. Journal of Occupational & Environmental Medicine 2015; 57: 1269-1274.10.1097/JOM.000000000000058226474447Search in Google Scholar

15. Pathway Genomics PathwayFit® genetic fitness profile. (2015) https://www.pathway.com/pathway-fit/Search in Google Scholar

16. Genomics England, 2015a. The 100,000 Genomes Project Protocol. https://www.genomicsengland.co.uk/wp-content/uploads/2015/03/GenomicEnglandProtocol_030315_v8.pdfSearch in Google Scholar

17. Genomics England, 2015b. A Framework for Industry Engagement: genomics enterprises prospectus. https://www.genomicsengland.co.uk/wp-content/uploads/2015/03/A-framework-for-industry-engagement_march2015.pdfSearch in Google Scholar

18. Cambridge Healthtech Institute. Omes and omics glossary and taxonomy: evolving terminology for emerging technologies. 2015. http://www.genomicglossaries.com/content/printpage.asp?EF=/content/omes.aspSearch in Google Scholar

19. Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics 2016; 17: 628-641.10.1093/bib/bbv108494583126969681Open DOISearch in Google Scholar

20. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821.10.1126/science.1225829628614822745249Search in Google Scholar

21. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 2012; 109: E2579-E2586.10.1073/pnas.1208507109346541422949671Search in Google Scholar

22. Wang CX, Cannon PM,. The clinical applications of genome edit ing in HIV. Blood 2016; 127: 2546-2552.10.1182/blood-2016-01-678144488280427053530Search in Google Scholar

23. Kühn R, Wurst W, Wefers B. TALENS Methods and Protocols. Methods in Molecular Biology 2016; 1338.10.1007/978-1-4939-2932-0Open DOISearch in Google Scholar

24. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology 2016; 34: 869-874.Search in Google Scholar

25. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J Mol Evol 2005; 60: 174-182.10.1007/s00239-004-0046-315791728Open DOISearch in Google Scholar

26. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322: 1843-1845.10.1126/science.1165771269565519095942Search in Google Scholar

27. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321: 960-964.10.1126/science.1159689589823518703739Search in Google Scholar

28. Pougach K, Semenova E, Bogdanova E, Datsenko K A, Djordjevic M, Wanner BL, Severinov, K. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Molecular Microbiology, 2010; 77: 1367-1379.10.1111/j.1365-2958.2010.07265.x293996320624226Search in Google Scholar

29. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471: 602-607.10.1038/nature09886307023921455174Search in Google Scholar

30. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucl. Acids Res. 2011; 39: gkr606-gkr9282.10.1093/nar/gkr606324164021813460Search in Google Scholar

31. Doudna JA, Charpentier E,. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096.10.1126/science.125809625430774Search in Google Scholar

32. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819-823.10.1126/science.1231143379541123287718Search in Google Scholar

33. Lander ES. The heroes of CRISPR. Cell 2016; 164: 18-28.10.1016/j.cell.2015.12.04126771483Search in Google Scholar

34. Theodilou F,. Genome editing, biochemical superpower? Biochemist 2016; 38:3.Search in Google Scholar

35. Taylor G,. Rewriting the book of life. Biochemist 2016; 38: 10-13.10.1042/BIO03803010Search in Google Scholar

36. Zetschke B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71. doi: 10.1016/j.cell.2015.09.038. Epub 2015 Sep 25.Search in Google Scholar

37. Sontheimer EJ, Wolfe SA. Cas9 gets a classmate. Nature Biotechnology 2015; 33:1240-1241.10.1038/nbt.342626650011Search in Google Scholar

38. Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell 2016; 164: 29-44.10.1016/j.cell.2015.12.03526771484Search in Google Scholar

39. Peterson A CRISPR; express delivery to any DNA address. Oral Diseases 2016; 23: 5-11.Search in Google Scholar

40. Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 2015; 348: 442-444.10.1126/science.aaa5945468773725908821Search in Google Scholar

41. Alphey A. Can CRISPR-Cas9 gene drives curb malaria? Nature Biotechnology 2016; 34: 149-50.10.1038/nbt.347326849518Open DOISearch in Google Scholar

42. Wu B, Luo L, Gao XJ. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat Biotechnol 2016; 34: 137-138.10.1038/nbt.3444532674226849513Open DOISearch in Google Scholar

43. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports 2016; 6: 22555.10.1038/srep22555477804126939770Search in Google Scholar

44. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Scientific Reports 2016; 6:19969.10.1038/srep19969472848526814166Search in Google Scholar

45. Olsum S. International Summit on Human Gene Editing: A Global Discussion. ISBN 978-0-309-2016 39193-1.Search in Google Scholar

46. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6: 363-372.10.1007/s13238-015-0153-5441767425894090Search in Google Scholar

47. Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 2016; 22: 411-419.10.1093/humupd/dmw00526932460Open DOISearch in Google Scholar

48. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet. 2016; 33:581-588.10.1007/s10815-016-0710-8487044927052831Search in Google Scholar

49. Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics 2016; Jun 26: elw025.10.1093/bfgp/elw02527345434Search in Google Scholar

50. Cyranoski D. Super-muscly pigs created by small genetic tweak. Nature 2015; 523: 13-14.10.1038/523013a26135425Search in Google Scholar

51. United Nations, World Population Prospects, 2015; https://esa.un-.org/unpd/wpp/Search in Google Scholar

52. United Nations Food and Agriculture Organisation, Food and Agriculture Organisation Statistical Report, 2016; www.fao.org/faostat/en/#homeSearch in Google Scholar

53. Gartland KMA, Gartland JS, Green biotechnology for food security in climate change. Elsevier Food Science Reference Module 2016. ISBN: 978-0-08-100596-5.10.1016/B978-0-08-100596-5.03071-7Search in Google Scholar

54. Fladung M. Cibus’ herbicide-resistant canola in European limbo. Nature Biotechnology 2016; 34: 473-474.10.1038/nbt.355827153271Open DOISearch in Google Scholar

55. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009; 459: 437-41.10.1038/nature07992Search in Google Scholar

56. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L.. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 2014; 32: 947-951.10.1038/nbt.2969Open DOISearch in Google Scholar

57. Perkowski M. USDA clears mildew resistant wheat. Capital Press 2016. 16 March.Search in Google Scholar

58. Feng Z. et al. Efficient genome editing in plants using a CRISPR/ Cas system. Cell Res. 2013; 23: 1229-123210.1038/cr.2013.114Open DOISearch in Google Scholar

59. Waltz E. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology 2016; 34: 582.10.1038/nbt0616-582Search in Google Scholar

60. Gill C. Gene-edited mushroom is changing GMO dialogue. Penn State News, 2016 April 19, 2016.Search in Google Scholar

61. Jones HD. Are plants engineered with CRISPR technology genetically modified organisms? Biochemist 2016; 38:14-17.Search in Google Scholar

62. Ranum P, Pena-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 2014; 1312: 105-112.10.1111/nyas.12396Open DOISearch in Google Scholar

63. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2016; doi: 10.1111/pbi.12603.Search in Google Scholar

64. Hart L. An SU-tolerant canola is just the first of what Cibus hopes will be a long list of trait improvements. GrainNews, 2016. January 28, 2016.Search in Google Scholar

65. Hitchcock J. Reflections on the law of gene editing. Biochemist 2016; 38: 22-25.10.1042/BIO03803022Search in Google Scholar

66. Hamzelou J. Exclusive: World’s first baby born with new ‘3Parent’ technique. New Scientist 2016; 27 Sept, 2016.10.1016/S0262-4079(16)30415-8Search in Google Scholar

67. Zhang J, Liua H, Luob S, Chavez-Badiolac A, Liu Z, Yang M, Munned S, Konstantinidis M, Wellse D, Huang T. First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh syndrome. Fertility and Sterility 2016; 106: 3 Supplement e375-e376.10.1016/j.fertnstert.2016.08.004Search in Google Scholar

68. Kang E, Wu J, Gutierrrez NM, Koski A et al., Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial mutations. Nature 2016; 540:270-275.10.1038/nature2059227919073Search in Google Scholar

69. Zafar A. Human embryo repair experiment swaps out faulty mitochondrial DNA. CBC News 03 Dec, 2016.Search in Google Scholar

70. Human Fertilisation & Embryology Authority. HFEA permits cautious use of mitochondrial donation in treatment, following advice from scientific experts. 2016. http://www.hfea.gov.uk/10563.htmlSearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics