Open Access

Aging and metalloproteinases expression in mussels extracellular matrix


Cite

1. Jung P, Zimowska M. Matrix metalloproteinase in development, physiol‑ ogy and degenerative processes of skeletal muscles. Postepy Biochem 2016;62(1):25‑35.Search in Google Scholar

2. Yong VW. Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005;6(12):931-44. doi: 10.1038/nrn1807.10.1038/nrn1807Search in Google Scholar

3. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92(8):827-39. doi: 10.1161/01.RES.0000070112.80711.3D.10.1161/01.RES.0000070112.80711.3DSearch in Google Scholar

4. Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, et al. Struc‑ tural bases for substrate and inhibitor recognition by matrix metallopro‑ teinases. Curr Med Chem 2008;15(22):2192‑222.10.2174/092986708785747490Search in Google Scholar

5. Itoh Y. Membrane‑type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015;44-46:207-23. doi: 10.1016/j.mat‑ bio.2015.03.004.Search in Google Scholar

6. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP‑9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3(6):589‑601.10.1016/S1535-6108(03)00133-8Search in Google Scholar

7. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001;276(47):43503-8. doi: 10.1074/jbc.M107736200.10.1074/jbc.M10773620011571304Search in Google Scholar

8. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221-33. doi: 10.1038/nrm2125.10.1038/nrm2125276008217318226Search in Google Scholar

9. Allen DL, Teitelbaum DH, Kurachi K. Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol 2003;284(4):805-15. doi: 10.1152/ajp‑ cell.00215.2002.Search in Google Scholar

10. Rullman E, Norrbom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, et al. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol (1985) 2009;106(3):804-12. doi: 10.1152/japplphysiol.90872.2008.10.1152/japplphysiol.90872.200819131480Search in Google Scholar

11. Piperi C, Papavassiliou A. Molecular mechanisms regulating matrix met‑ alloproteinases. Curr Top Med Chem 2012;12(10):1095‑112.10.2174/156802661120801109522519442Search in Google Scholar

12. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: Biologi‑ cal actions and therapeutic opportunities. J Cell Sci 2002;115:3719-27.10.1242/jcs.0006312235282Search in Google Scholar

13. Alexius-Lindgren M, Andersson E, Lindstedt I, Engström W. The RECK gene and biological malignancy – its significance in angiogenesis and inhibi‑ tion of matrix metalloproteinases. Anticancer Res 2014;34(8):3867-73.Search in Google Scholar

14. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 2010;20(3):161-8. doi: 10.1016/j.semcancer.2010.05.002.10.1016/j.semcancer.2010.05.002294156620470890Search in Google Scholar

15. Overall CM. Molecular determinants of metalloproteinase substrate speci‑ ficity: Matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 2002;22(1):51-86. doi: 10.1385/MB:22:1:051.10.1385/MB:22:1:051Search in Google Scholar

16. Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential impli‑ cations. Apoptosis 2001;6(6):479-82.10.1023/A:1012493808790Search in Google Scholar

17. Nagase H, Visse R, Murphy G. Structure and function of matrix metallo‑ proteinases and TIMPs. Cardiovasc Res 2006;69(3):562-73. doi: 10.1016/j. cardiores.2005.12.002.Search in Google Scholar

18. Fassina G, Ferrari N, Brigati C, Benelli R, Santi L, Noonan DM, et al. Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metast 2000;18(2):111‑20.10.1023/A:1006797522521Search in Google Scholar

19. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998;435(1):39‑44.10.1016/S0014-5793(98)01031-XSearch in Google Scholar

20. Evans WJ. Protein nutrition, exercise and aging. J Am Coll Nutr 2004;23(6):601‑9.10.1080/07315724.2004.10719430Search in Google Scholar

21. Budzińska K. Wpływ starzenia się organizmu na biologię mięśni szkiele‑ towych. Gerontol Pol 2006;13(1):1-7.Search in Google Scholar

22. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol 2003;95(4):1717-27. doi: 10.1152/japplphysiol.00347.2003.10.1152/japplphysiol.00347.2003Search in Google Scholar

23. Dardevet D, Sornet C, Savary I, Debras D, Patureau‑Mirand P, Grizard J. Glucocorticoid effects on insulin‑ and IGF‑I‑regulated muscle protein metabolism during aging. J Endocrinol 1998;156(1):83-9.10.1677/joe.0.1560083Search in Google Scholar

24. Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard D. Sensi‑ tivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitinproteasome proteolytic pathway in aging. J Clin Invest 1995;96(5):2113-9. doi: 10.1172/JCI118264.10.1172/JCI118264Search in Google Scholar

25. Morley JE. Anorexia, sarcopenia, and aging. Nutrition 2001;17:660-3.10.1016/S0899-9007(01)00574-3Search in Google Scholar

26. Delbono O. Regulation of excitation contraction coupling by insulin‑like growth factor-1 in aging skeletal muscle. J Nutr Health Aging 2000;4(3):162-4.Search in Google Scholar

27. Badawi Y, Nishimune H. Presynaptic active zones of mammalian neu‑ romuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017;127:78-88. doi: 10.1016/j.neures.2017.11.014.10.1016/j.neures.2017.11.014Search in Google Scholar

28. Lexell J. Evidence for nervous system degeneration with advancing age. Nutr 1997;127(5):1011-3.10.1093/jn/127.5.1011SSearch in Google Scholar

29. Doherty TJ, Vandervoort AA, Brown WF. Effects of ageing on the motor unit: A brief review. Can J Appl Physiol 1993;18(4):331-58.10.1139/h93-029Search in Google Scholar

30. Erim Z, Beg MF, Burke DT, de Luca CJ. Effects of aging on motor‑unit control properties. J Neurophysiol 1999;82(5):2081-91. doi: 10.1152/jn.1999.82.5.2081.10.1152/jn.1999.82.5.2081Search in Google Scholar

31. Prakash YS, Sieck GC. Age-related remodeling of neuromuscular junc‑ tions on type-identified diaphragm fibers. Muscle Nerve 1998;21:887-95.10.1002/(SICI)1097-4598(199807)21:7<887::AID-MUS6>3.0.CO;2-2Search in Google Scholar

32. Evans WJ. Effects of exercise on senescent muscle. Clin Orthop Relat Res 2002;403:211‑20.10.1097/00003086-200210001-00025Search in Google Scholar

33. Pastoris O, Boschi F, Verri M, Baiardi P, Felzani G, Vecchiet J, et al. The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects. Exp Gerontol 2000;35(1):95‑104.10.1016/S0531-5565(99)00077-7Search in Google Scholar

34. Oliven A, Carmi N, Coleman R, Odeh M, Silbermann M. Age‑related changes in upper airway muscles morphological and oxidative properties. Exp Gerontol 2001,36(10):1673-86.10.1016/S0531-5565(01)00127-9Search in Google Scholar

35. Powers SK, Lawler J, Criswell D, Dodd S, Silverman H. Age‑related changes in enzyme activity in the rat diaphragm. Respir Physiol 1991;83(1):1‑9.10.1016/0034-5687(91)90088-ZSearch in Google Scholar

36. Reid MB. Invited Review: Redox modulation of skeletal muscle contrac‑ tion: What we know and what we don’t. J Appl Physiol 2001;90(2):724-31. doi: 10.1152/jappl.2001.90.2.724.10.1152/jappl.2001.90.2.724Search in Google Scholar

37. Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, et al. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol 2004;39(1):17-24.10.1016/j.exger.2003.09.012Search in Google Scholar

38. Ji LL. Exercise at old age: Does it increase or alleviate oxidative stress? Ann N Y Acad Sci 2001;928:236–247.Search in Google Scholar

39. Best TM, Hunter KD. Muscle injury and repair. Phys Med Rehabil Clin N Am 2000;11(2):251‑66.10.1016/S1047-9651(18)30128-1Search in Google Scholar

40. Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012;48(3):508-18. doi: 10.1016/j.nbd.2012.07.023.10.1016/j.nbd.2012.07.02322885251Search in Google Scholar

41. Zimowska M, Brzoska E, Świerczynska M, Stremińska W, Moraczewski J. Distinct patterns of MMP‑9 and MMP‑2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol 2008;52(2-3):307-14. doi: 10.1387/ijdb.072331mz.10.1387/ijdb.072331mz18311722Search in Google Scholar

42. Rullman E, Rundqvist H, Wågsäter D, Fischer H, Eriksson P, Sundberg CJ, et al. A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol (1985) 2007;102(6):2346-51. doi: 10.1152/japplphysiol.00822.2006.10.1152/japplphysiol.00822.200617255365Search in Google Scholar

43. Kaar JL, Li Y, Blair HC, Asche G, Koepsel RR, Huard J, et al. Matrix metallo‑ proteinase-1 treatment of muscle fibrosis. Acta Biomater 2008;4(5):1411-20. doi: 10.1016/j.actbio.2008.03.010.10.1016/j.actbio.2008.03.01018440885Search in Google Scholar

44. Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdière-Sahuqué M, et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: A study in experimentally injured and mdx muscles. Dev Biol 1999;205(1):158-70. doi: 10.1006/dbio.1998.9107.10.1006/dbio.1998.91079882504Search in Google Scholar

45. Kieseier BC, Schneider C, Clements JM, Gearing AJ, Gold R, Toyka KV, et al. Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 2001;124(2):341-51.10.1093/brain/124.2.34111157561Search in Google Scholar

46. Bani C, Lagrota-Candido J, Pinheiro DF, Leite PE, Salimena MC, Henriques-Pons A, et al. Pattern of metalloprotease activity and myofiber regenera‑ tion in skeletal muscles of mdx mice. Muscle Nerve 2008;37(5):583-92. doi: 10.1002/mus.20970.10.1002/mus.2097018288709Search in Google Scholar

47. Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S, et al. Activation and localization of matrix metalloproteinase‑2 and ‑9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculo‑ skelet Disord 2007;8:54. doi: 10.1186/1471-2474-8-54.10.1186/1471-2474-8-54192907117598883Search in Google Scholar

48. Zanotti S, Gibertini S, Mora M. Altered production of extra‑cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-beta1 treatment. Cell Tissue Res 2010;339(2):397-410. doi: 10.1007/s00441-009-0889-4.10.1007/s00441-009-0889-419902258Search in Google Scholar

49. Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: Migration, differentiation, regeneration and fibrosis. Cell Adh Migr 2009;3(4):337-41.10.4161/cam.3.4.9338280274219667757Search in Google Scholar

50. Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP. In vitro migra‑ tion of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 2000;258(2): 279-87. doi: 10.1006/excr.2000.4962.10.1006/excr.2000.496210896779Search in Google Scholar

51. Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hat‑ tori A. Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 2008;29(1):37-44. doi: 10.1007/s10974-008-9140-2.10.1007/s10974-008-9140-218563597Search in Google Scholar

52. Caron NJ, Asselin I, Morel G, Tremblay JP. Increased myogenic potential and fusion of matrilysin‑expressing myoblasts transplanted in mice. Cell Transplant 1999;8(5):465-76.10.1177/09636897990080050210580341Search in Google Scholar

53. Ohtake Y, Tojo H, Seiki M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 2006;119(18):3822-32. doi: 10.1242/jcs.03158.10.1242/jcs.0315816926191Search in Google Scholar

54. Szychta W. Metaloproteinazy jako wskaźniki pozawałowej przebudowy mięśnia lewej komory serca. Kardiol Dypl 2010;9(12):52-6.Search in Google Scholar

55. Yabluchanskiy A, Ma Y, Chiao YA, Lopez EF, Voorhees AP, Toba H, et al. Car‑ diac aging is initiated by matrix metalloproteinase‑9‑mediated endothe‑ lial dysfunction. Am J Physiol Heart Circ Physiol 2014;306(10):1398-407. doi: 10.1152/ajpheart.00090.2014.10.1152/ajpheart.00090.2014402471924658018Search in Google Scholar

56. Toba H, Cannon PL, Yabluchanskiy A, Iyer RP, D’Armiento J, Lindsey ML. Transgenic overexpression of macrophage matrix metalloproteinase‑9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflam‑ mation, and fibrosis. Am J Physiol Heart Circ Physiol 2017;312(3):H375-83. doi: 10.1152/ajpheart.00633.2016.10.1152/ajpheart.00633.2016540201328011588Search in Google Scholar

57. Guzzoni V, Marqueti RC, Durigan JLQ, Faustino de Carvalho H, Lino RLB, Mekaro MS, et al. Reduced collagen accumulation and augmented MMP‑2 activity in left ventricle of old rats submitted to high‑intensity resist‑ ance training. J Appl Physiol (1985) 2017;123(3):655-63. doi: 10.1152/japplphysiol.01090.2016.10.1152/japplphysiol.01090.201628684598Search in Google Scholar

58. Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glyca‑ tion end‑product accumulation in senescent rats. Exp Gerontol 2014;50:9-18. doi: 10.1016/j.exger.2013.11.006.10.1016/j.exger.2013.11.00624280067Search in Google Scholar

59. Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregula‑ tion in the aging rat heart. FASEB J 2011;25(3):1106-17. doi: 10.1096/fj.10-172924.10.1096/fj.10-172924304284521148111Search in Google Scholar

60. Kim JS, Yi HK. Intermittent bout exercise training down-regulates age-associated inflammation in skeletal muscles. Exp Gerontol 2015;72:261-8. doi: 10.1016/j.exger.2015.11.001.10.1016/j.exger.2015.11.00126545590Search in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health