Open Access

Applications of the Generalized Kummer’s Summation Theorem to Transformation Formulas and Generating Functions


Cite

Introduction

In our present investigation, we begin by recalling the following definitions:

The Exton’s quadruple hypergeometric functions K5 and K12 [1]:

K5(a,a,a,a;b1,b1,b2,b2;c1,c2,c3,c4;x,y,z,t)=p,q,r,s=0(a)p+q+r+s(b1)p+q(b2)r+sxpyqzrts(c1)p(c2)q(c3)r(c4)sp!q!r!s!$$\begin{equation}\label{equation1} K_5(a,a,a,a;b_1,b_1,b_2,b_2;c_1,c_2,c_3,c_4;x,y,z,t) =\sum_{p,q,r,s=0}^\infty\frac{(a)_{p+q+r+s}(b_1)_{p+q}(b_2)_{r+s}~x^p~ y^q~ z^r~ t^s}{(c_1)_p (c_2)_q (c_3)_r (c_4)_s~ p! q! r! s!} \end{equation}$$

and

K12(a,a,a,a;b1,b2,b3,b4;c1,c1,c2,c2;x,y,z,t)=p,q,r,s=0(a)p+q+r+s(b1)p(b2)q(b3)r(b4)sxpyqzrts(c1)p+q(c2)r+sp!q!r!s!,$$\begin{equation} \label{equation2} K_{12}(a,a,a,a;b_1,b_2,b_3,b_4;c_1,c_1,c_2,c_2;x,y,z,t) =\sum_{p,q,r,s=0}^\infty\frac{(a)_{p+q+r+s}(b_1)_p(b_2)_q (b_3)_r (b_4)_s~x^p~ y^q~ z^r~ t^s}{(c_1)_{p+q} (c_2)_{r+s}~ p! q! r! s!}, \end{equation}$$

where (a)n denotes the Pochhammer’s symbol defined by

(a)n=1,ifn=0a(a+1)(a+2)(a+n1),ifn=1,2,3,$$\begin{equation}\label{equation3} (a)_n~=~\left \{ \begin{array}{cl} 1&, if~ n=0\\ a(a+1)(a+2)\dots(a+n-1)&,if~ n = 1,2,3,\dots\end{array} \right. \end{equation}$$

The Exton’s triple hypergeometric functions X4 and X7 [2]:

X4(a,b;c1,c2,c3;x,y,z)=m,n,p=0(a)2m+n+p(b)n+pxmynzp(c1)m(c2)n(c3)pm!n!p!$$\begin{equation}\label{equation4} X_4(a,b;c_1,c_2,c_3;x,y,z) =\sum_{m,n,p=0}^\infty\frac{(a)_{2m+n+p}(b)_{n+p}~x^m~ y^n~ z^p}{(c_1)_m (c_2)_n(c_3)_p~ m! n! p!} \end{equation}$$

and

X7(a,b1,b2;c1,c2;x,y,z)=m,n,p=0(a)2m+n+p(b1)n(b2)pxmynzp(c1)n+p(c2)mm!n!p!.$$\begin{equation}\label{equation5} X_7(a,b_1,b_2;c_1,c_2;x,y,z) =\sum_{m,n,p=0}^\infty\frac{(a)_{2m+n+p}(b_1)_n(b_2)_p~x^m~ y^n~ z^p}{(c_1)_{n+p} (c_2)_m~ m! n! p!}. \end{equation}$$

The Saran’s triple hypergeometric functions FE and FG [6]:

FE(a1,a1,a1,b1,b2,b2;c1,c2,c3;x,y,z)=m,n,p=0(a1)m+n+p(b1)m(b2)n+pxmynzp(c1)m(c2)n(c3)pm!n!p!$$\begin{equation}\label{equation6} F_E(a_1,a_1,a_1,b_1,b_2,b_2;c_1,c_2,c_3;x,y,z)=\sum_{m,n,p=0}^\infty\frac{(a_1)_{m+n+p}(b_1)_m(b_2)_{n+p}~x^m~ y^n~ z^p}{(c_1)_m (c_2)_n(c_3)_p~ m! n! p!} \end{equation}$$

and

FG(a1,a1,a1,b1,b2,b3;c1,c2,c2;x,y,z)=m,n,p=0(a1)m+n+p(b1)m(b2)n(b3)pxmynzp(c1)m(c2)n+pm!n!p!.$$\begin{equation}\label{equation7} F_G(a_1,a_1,a_1,b_1,b_2,b_3;c_1,c_2,c_2;x,y,z)=\sum_{m,n,p=0}^\infty\frac{(a_1)_{m+n+p}(b_1)_m(b_2)_n(b_3)_p~x^m~ y^n~ z^p}{(c_1)_m (c_2)_{n+p}~ m! n! p!}. \end{equation}$$

The Exton’s double hypergeometric function [3]

XA:B;BC:D;D(a):(b);(b);(c):(d);(d);x,y=m,n=0((a))2m+n((b))m((b))nxmyn((c))2m+n((d))m((d))nm!n!,$$\begin{equation}\label{equation8} X \begin{array}{c} A:B;B'\\ C:D;D' \end{array} \left [ \begin{array}{c} (a)~:~(b)~;~(b')~;\\ (c)~:~(d)~;~(d')~; \end{array} \begin{array}{c} x~,~y \end{array} \right] =~ \sum_{m,n=0}^{\infty}\frac{((a))_{2m+n}((b))_m((b'))_n ~x^m~y^n}{((c))_{2m+n}((d))_m((d'))_n ~m!~n!}, \end{equation}$$

where the symbol ((a))m denotes the product j=1A(aj)m.$ \prod\limits_{j=1}^{A}(a_j)_m $.

The Jacobi polynomials Pn(α,β)(x)$P_n^{(\alpha,\beta)}(x)$[5]

Pn(α,β)(x)=(1+α)nn!2F1n,1+α+β+n;1+α;1x2.$$\begin{equation}P_n^{(\alpha,\beta)}(x) = \frac{(1+\alpha)_n}{n!}~{}_2F_1 \left [ \begin{array}{cc} -n,1+\alpha+\beta+n&;\\ 1+\alpha&; \end{array} \begin{array}{c} \frac{1-x}{2} \end{array} \right]. \end{equation}$$

In order to obtain our main results, we require the following generalization of the classical Kummer’s summation theorem for the series 2F1(-1) due to Lavoie et al [4]

2F1a,b;1+ab+i;1=Γ(12)Γ(1+ab+i)Γ(1b)2aΓ(1b+12(i+|i|))×{AiΓ(12a+12i+12[1+i2])Γ(1+12ab+12i)+BiΓ(12a+12i[i2])Γ(12+12ab+12i)}$$\begin{equation} {}_2F_1~ \left [ \begin{array}{cc} a~,~b&;\\ 1+a-b+i&; \end{array} \begin{array}{c} -1 \end{array} \right]~=~ \frac{\Gamma(\frac{1}{2})\Gamma(1+a-b+i)\Gamma(1-b)}{2^a\Gamma(1-b+\frac{1}{2}(i+|i|))} \nonumber \\ \times \biggr \{ \frac{A_i}{\Gamma(\frac{1}{2}a+\frac{1}{2}i+\frac{1}{2}-[\frac{1+i}{2}])\Gamma(1+\frac{1}{2}a-b+\frac{1}{2}i)} +\frac{B_i}{\Gamma(\frac{1}{2}a+\frac{1}{2}i-[\frac{i}{2}])\Gamma(\frac{1}{2}+\frac{1}{2}a-b+\frac{1}{2}i)} \biggl\} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

where [x] denotes the greatest integer less than or equal to x and |x| denotes the usual absolute value of x. The coefficients Ai and Bi are given respectively in [4]. When i = 0, (10) reduces immediately to the classical Kummer’s theorem [5]

2F1a,b;1+ab;1=Γ(1+ab)Γ(12)2aΓ(1+12ab)Γ(12a+12).$$\begin{equation}\label{equation11} {}_2F_1~ \left [ \begin{array}{cc} a~,~b&;\\ 1+a-b&; \end{array} \begin{array}{c} -1 \end{array} \right]~=~ \frac{\Gamma(1+a-b)\Gamma(\frac{1}{2})}{2^a\Gamma(1+\frac{1}{2}a-b)\Gamma(\frac{1}{2}a+\frac{1}{2})}. \end{equation}$$

We also require the following identities [8]:

(α)m+n=(α)m(α+m)n$$\begin{equation}\label{equation12} (\alpha)_{m+n} = (\alpha)_m(\alpha+m)_n \end{equation}$$m=0n=0A(n,m)=m=0n=0mA(n,mn)$$\begin{equation}\label{equation13} \sum_{m=0}^{\infty}\sum_{n=0}^{\infty}A(n,m)=\sum_{m=0}^{\infty}\sum_{n=0}^{m}A(n,m-n) \end{equation}$$(α)mn=(1)n(α)m(1αm)n,0nm$$\begin{equation}\label{equation14} (\alpha)_{m-n} = \frac{(-1)^n(\alpha)_m}{(1-\alpha-m)_n},~~~0 \leq n \leq m \end{equation}$$(mn)!=(1)nm!(m)n,0nm.$$\begin{equation}\label{equation15} (m-n)! = \frac{(-1)^n~m!}{(-m)_n},~~~0 \leq n \leq m. \end{equation}$$
Main Results

Theorem 1.The following general transformation formulas for K5holds true.

K5(a,a,a,a;b,b,b,b;c,c,d,d+i;x,y,z,z)=m=0n=0p=0(a)m+n+2p(b)m+n(b)2pxmynz2p(c)m(c)n(d)2pm!n!(2p)!×{Ai22pΓ(12)Γ(d+i)Γ(d+2p)Γ(d+2p+12(i+|i|))Γ(p+12i+12[1+i2])Γ(p+d+12i)+Bi22pΓ(12)Γ(d+i)Γ(d+2p)Γ(d+2p+12(i+|i|))Γ(p+12i[i2])Γ(p+d12+12i)}+m=0n=0p=0(a)m+n+2p+1(b)m+n(b)2p+1xmynz2p+1(c)m(c)n(d)2p+1m!n!(2p+1)!×{Ai22p+1Γ(12)Γ(d+i)Γ(d+2p+1)Γ(d+2p+1+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12+d+12i)+Bi22p+1Γ(12)Γ(d+i)Γ(d+2p+1)Γ(d+2p+1+12(i+|i|))Γ(p12+12i[i2])Γ(p+d+12i)}$$\begin{equation} K_5(a,a,a,a;b',b',b,b;c',c,d,d+i;x,y,z,-z) \nonumber \\ =\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p}(b')_{m+n}(b)_{2p}~x^m~y^n~z^{2p}}{(c')_m(c)_n(d)_{2p}~m!~n!~(2p)!} \nonumber \\ \times \biggr \{ A'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p)}{\Gamma(d+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(p+d+\frac{1}{2}i)} \nonumber \\ +B'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p)}{\Gamma(d+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+d-\frac{1}{2}+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p+1}(b')_{m+n}(b)_{2p+1}~x^m~y^n~z^{2p+1}}{(c')_m(c)_n(d)_{2p+1}~m!~n!~(2p+1)!}\nonumber \\ \times \biggr \{ A''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p+1)}{\Gamma(d+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(p+\frac{1}{2}+d+\frac{1}{2}i)} \nonumber \\ +B''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p+1)}{\Gamma(d+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+d+\frac{1}{2}i)} \biggl \} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

The coefficientsAi$ A'_i $andBi$B'_i$can be obtained from the tables of Ai and Bi given in [4] by taking a = -2p, b = 1 -d -2 p and the coefficientsAi$A''_i$andBi$B''_i$can be also obtained from the same tables by taking a = -2p-1, b = -d-2p.

Theorem 2.The following general transformation formulas for K12holds true.

K12(a,a,a,a;b,b,ci,c;d,d,e,e;x,y,z,z)=m=0n=0p=0(a)m+n+2p(b)m(b)n(ci)2pxmynz2p(d)m+n(e)2pm!n!(2p)!×{Ei22pΓ(12)Γ(1+2pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i+12[1+i2])Γ(1pc+12i)+Fi22pΓ(12)Γ(12pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i[i2])Γ(p+12c+12i)}+m=0n=0p=0(a)m+n+2p+1(b)m(b)n(ci)2p+1xmynz2p+1(d)m+n(e)2p+1m!n!(2p+1)!×{Ei22p+1Γ(12)Γ(2pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12c+12i)+Fi22p+1Γ(12)Γ(2pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p12+12i[i2])Γ(pc+12i)}$$\begin{equation} K_{12}(a,a,a,a;b',b,c-i,c;d,d,e,e;x,y,z,-z) \nonumber \\ =\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p}(b')_m(b)_n(c-i)_{2p}~x^m~y^n~z^{2p}}{(d)_{m+n}(e)_{2p}~m!~n!~(2p)!} \nonumber \\ \times \biggr \{ E'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1+2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(1-p-c+\frac{1}{2}i)} \nonumber \\ +F'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p+\frac{1}{2}-c+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p+1}(b')_m(b)_n(c-i)_{2p+1}~x^m~y^n~z^{2p+1}}{(d)_{m+n}(e)_{2p+1}~m!~n!~(2p+1)!} \nonumber \\ \times \biggr \{ E''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(-p+\frac{1}{2}-c+\frac{1}{2}i)} \nonumber \\ +F''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p-c+\frac{1}{2}i)} \biggl \} \end{equation} $$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

The coefficientsEi$E'_i$andFi$F'_i$can be obtained from the tables of Ai and Bi given in [4] by taking a = - 2p, b = c. Also the coefficientsEi$E''_i$andFi$F''_i$can be obtained from the same tables by taking a = -2p-1, b = c.

Proof. Denoting the left hand side of (16) by S, expanding K5 in a power series and using the results (12) – (15), then after simplification, we obtain

S=m=0n=0p=0(a)m+n+p(b)m+n(b)pxmynzp(c)m(c)n(d)pm!n!p!×2F1p,1dp;d+i;1$$\begin{equation*} S=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+p}(b')_{m+n}(b)_p~x^m~y^n~z^p}{(c')_m(c)_n(d)_p~m!~n!~p!} \times {}_2F_1\left [ \begin{array}{cc} -p~,~1-d-p&;\\ d+i&; \end{array} \begin{array}{c} -1 \end{array} \right] \end{equation*}$$

Separating into even and odd powers of z, we have

S=m=0n=0p=0(a)m+n+2p(b)m+n(b)2pxmynz2p(c)m(c)n(d)2pm!n!(2p)!2F12p,1d2p;d+i;1+m=0n=0p=0(a)m+n+2p+1(b)m+n(b)2p+1xmynz2p+1(c)m(c)n(d)2p+1m!n!(2p+1)!2F12p1,d2p;d+i;1$$\begin{equation*} S=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p}(b')_{m+n}(b)_{2p}~x^m~y^n~z^{2p}}{(c')_m(c)_n(d)_{2p}~m!~n!~(2p)!}{}_2F_1\left [ \begin{array}{cc} -2p~,~1-d-2p&;\\ d+i&; \end{array} \begin{array}{c} -1 \end{array} \right] \\ +\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{m+n+2p+1}(b')_{m+n}(b)_{2p+1}~x^m~y^n~z^{2p+1}}{(c')_m(c)_n(d)_{2p+1}~m!~n!~(2p+1)!} {}_2F_1\left [ \begin{array}{cc} -2p-1~,~-d-2p&;\\ d+i&; \end{array} \begin{array}{c} -1 \end{array} \right] \end{equation*}$$

Now,by applying the generalized Kummer’s theorem (10) to each 2F1[-1], then after simplification, we arrive at the right hand side of (16). This completes the proof of (16). The proof of (17) is similar to that of (16) and we use here the result (2).

Remark 1. On taking x = 0 in (16) and (17), we obtain the following transformation formulas for Saran’s triple hypergeometric functions FE and FG:

Corollary 3.

FE(a,a,a;b,b,b;c,d,d+i;y,z,z)=n=0p=0(a)n+2p(b)n(b)2pynz2p(c)n(d)2pn!(2p)!×{Ai22pΓ(12)Γ(d+i)Γ(d+2p)Γ(d+2p+12(i+|i|))Γ(p+12i+12[1+i2])Γ(p+d+12i)+Bi22pΓ(12)Γ(d+i)Γ(d+2p)Γ(d+2p+12(i+|i|))Γ(p+12i[i2])Γ(p+d12+12i)}+n=0p=0(a)n+2p+1(b)n(b)2p+1ynz2p+1(c)n(d)2p+1n!(2p+1)!×{Ai22p+1Γ(12)Γ(d+i)Γ(d+2p+1)Γ(d+2p+1+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12+d+12i)+Bi22p+1Γ(12)Γ(d+i)Γ(d+2p+1)Γ(d+2p+1+12(i+|i|))Γ(p12+12i[i2])Γ(p+d+12i)}$$\begin{equation} F_E(a,a,a;b',b,b;c,d,d+i;y,z,-z) \nonumber =\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{n+2p}(b')_n(b)_{2p}~~y^n~z^{2p}}{(c)_n(d)_{2p}~n!~(2p)!} \nonumber \\ \times \biggr \{ A'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p)}{\Gamma(d+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(p+d+\frac{1}{2}i)} \nonumber \\ +B'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p)}{\Gamma(d+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+d-\frac{1}{2}+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{n+2p+1}(b')_n(b)_{2p+1}~y^n~z^{2p+1}}{(c)_n(d)_{2p+1}~n!~(2p+1)!} \nonumber \\ \times \biggr \{ A''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p+1)}{\Gamma(d+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(p+\frac{1}{2}+d+\frac{1}{2}i)} \nonumber \\ +B''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(d+i)\Gamma(d+2p+1)}{\Gamma(d+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+d+\frac{1}{2}i)} \biggl \} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

Corollary 4.

FG(a,a,a;b,ci,c;d,e,e;y,z,z)=n=0p=0(a)n+2p(b)n(ci)2pynz2p(d)n(e)2pn!(2p)!×{Ei22pΓ(12)Γ(12pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i+12[1+i2])Γ(1pc+12i)+Fi22pΓ(12)Γ(12pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i[i2])Γ(p+12c+12i)}+n=0p=0(a)n+2p+1(b)n(ci)2p+1ynz2p+1(d)n(e)2p+1n!(2p+1)!×{Ei22p+1Γ(12)Γ(2pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12c+12i)+Fi22p+1Γ(12)Γ(2pc+i)Γ(1c)Γ(1c+12(i+|i|))Γ(p12+12i[i2])Γ(pc+12i)}$$\begin{equation} F_G(a,a,a;b,c-i,c;d,e,e;y,z,-z) \nonumber \\ =\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{n+2p}(b)_n(c-i)_{2p}~~y^n~z^{2p}}{(d)_n(e)_{2p}~n!~(2p)!} \nonumber \\ \times \biggr \{ E'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(1-p-c+\frac{1}{2}i)}\nonumber \\ +F'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p+\frac{1}{2}-c+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(a)_{n+2p+1}(b)_n(c-i)_{2p+1}~y^n~z^{2p+1}}{(d)_n(e)_{2p+1}~n!~(2p+1)!} \nonumber \\ \times \biggr \{ E''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(-p+\frac{1}{2}-c+\frac{1}{2}i)}\nonumber \\ +F''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-c+i)\Gamma(1-c)}{\Gamma(1-c+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p-c+\frac{1}{2}i)}\biggl \} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

Special cases of (16) and (17)

Here we mention some special cases of our results (16) and (17) and we will use in each case the following results [8]:

Γ(α+n)Γ(α)=(α)n,Γ(αn)Γ(α)=(1)n(1α)n$$\begin{equation}\label{equation20} \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} = (\alpha)_n,~~\frac{\Gamma(\alpha-n)}{\Gamma(\alpha)}~=~\frac{(-1)^n}{(1-\alpha)_n} \end{equation}$$Γ12Γ(1+α)=2αΓ12+12αΓ1+12α$$\begin{equation}\Gamma\left (\frac{1}{2} \right )\Gamma(1+\alpha)~=~2^\alpha~\Gamma\left (\frac{1}{2}+\frac{1}{2}\alpha\right )\Gamma\left (1+\frac{1}{2}\alpha \right) \end{equation}$$(α)2n=22n12αn12α+12n$$\begin{equation}(\alpha)_{2n} = 2^{2n} \left (\frac{1}{2}\alpha \right)_n~\left (\frac{1}{2}\alpha+\frac{1}{2} \right)_n \end{equation}$$(2n)!=22n12nn!and(2n+1)!=22n32nn!.$$\begin{equation}\label{equation23} (2n)!~=~2^{2n} \left(\frac{1}{2}\right)_n n! ~~and~~ (2n+1)!~=~2^{2n} \left(\frac{3}{2}\right)_n n!. \end{equation}$$

Taking i = 0 and d = b in (16), we get

K5(a,a,a,a;b,b,b,b;c,c,b,b;x,y,z,z)=X4(a,b;b,c,c;z2,x,y).$$\begin{equation}\label{equation24} K_5(a,a,a,a;b',b',b,b;c',c,b,b;x,y,z,-z)=X_4(a,b';b,c',c;-z^2,x,y). \end{equation}$$

Taking i = 1 and d = b-1 in (16), we get

K5(a,a,a,a;b,b,b,b;c,c,b1,b;x,y,z,z)=X4(a,b;b1,c,c;z2,x,y)+azb1X4(a+1,b;b,c,c;z2,x,y).$$\begin{equation} K_5(a,a,a,a;b',b',b,b;c',c,b-1,b;x,y,z,-z)\nonumber \\ =X_4(a,b';b-1,c',c;-z^2,x,y)+\frac{az}{b-1}X_4(a+1,b';b,c',c;-z^2,x,y). \end{equation}$$

Taking i = -1 and d = b in (16), we get

K5(a,a,a,a;b,b,b,b;c,c,b,b1;x,y,z,z)=X4(a,b;b1,c,c;z2,x,y)az2X4(a+1,b;b,c,c;z2,x,y).$$\begin{equation} K_5(a,a,a,a;b',b',b,b;c',c,b,b-1;x,y,z,-z)\nonumber \\ =X_4(a,b';b-1,c',c;-z^2,x,y)-\frac{az}{2}X_4(a+1,b';b,c',c;-z^2,x,y). \end{equation}$$

Taking i = 0 and e = 2c in (17), we get

K12(a,a,a,a;b,b,c,c;d,d,2c,2c;x,y,z,z)=X7(a,b,b;d,c+12;z2/4,x,y).$$\begin{equation}\label{equation27} K_{12}(a,a,a,a;b',b,c,c;d,d,2c,2c;x,y,z,-z) =X_7(a,b',b;d,c+\frac{1}{2};z^2/4,x,y). \end{equation}$$

Taking i = 1 and e = 2c-1 in (17), we get

K12(a,a,a,a;b,b,c1,c;d,d,2c1,2c1;x,y,z,z)=X7(a,b,b;d,c12;z2/4,x,y)az2c1X7(a+1,b,b;d,c+12;z2/4,x,y).$$\begin{equation} K_{12}(a,a,a,a;b',b,c-1,c;d,d,2c-1,2c-1;x,y,z,-z)\nonumber \\ =X_7(a,b',b;d,c-\frac{1}{2};z^2/4,x,y)-\frac{az}{2c-1}X_7(a+1,b',b;d,c+\frac{1}{2};z^2/4,x,y). \end{equation}$$

Taking i = -1 and e = 2c+1 in (17), we get

K12(a,a,a,a;b,b,c+1,c;d,d,2c+1,2c+1;x,y,z,z)=X7(a,b,b;d,c+12;z2/4,x,y)az2c+1X7(a+1,b,b;d,c+32;z2/4,x,y).$$\begin{equation}K_{12}(a,a,a,a;b',b,c+1,c;d,d,2c+1,2c+1;x,y,z,-z)\nonumber \\ =X_7(a,b',b;d,c+\frac{1}{2};z^2/4,x,y)-\frac{az}{2c+1}X_7(a+1,b',b;d,c+\frac{3}{2};z^2/4,x,y). \end{equation}$$
Applications to Generating Functions

Two interesting generating functions for Jacobi polynomials Pn(α,β)(x)$P_n^{(\alpha,\beta)}(x)$are given by Sharma and Mittal [7]

n=0(λ)n(αβ)nPn(αn,βn)(x)F4(λ+n,γ;δ,ρ;y,z)tn=[1(1x)t2]λ×FE(λ,λ,λ,α,γ,γ;αβ,δ,ρ;2t2(1x)t,2y2(1x)t,2z2(1x)t)$$\begin{equation}\sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_4(\lambda+n,\gamma;\delta,\rho;y,z)t^n = \bigg[1-\frac{(1-x)t}{2}\bigg]^{-\lambda} \nonumber \\ \times F_E \bigg(\lambda,\lambda,\lambda,-\alpha,\gamma,\gamma;-\alpha-\beta,\delta,\rho;\frac{-2t}{2-(1-x)t},\frac{2y}{2-(1-x)t},\frac{2z}{2-(1-x)t}\bigg) \end{equation}$$

and

n=0(λ)n(αβ)nPn(αn,βn)(x)F1(λ+n,γ,ρ;δ;y,z)tn=[1(1x)t2]λ×FG(λ,λ,λ,α,γ,ρ;αβ,δ,δ;2t2(1x)t,2y2(1x)t,2z2(1x)t),$$\begin{equation}\label{equation31} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_1(\lambda+n,\gamma,\rho;\delta;y,z)t^n = \bigg[1-\frac{(1-x)t}{2}\bigg]^{-\lambda} \nonumber \\ \times F_G \bigg(\lambda,\lambda,\lambda,-\alpha,\gamma,\rho;-\alpha-\beta,\delta,\delta;\frac{-2t}{2-(1-x)t},\frac{2y}{2-(1-x)t},\frac{2z}{2-(1-x)t}\bigg), \end{equation}$$

where F1 and F4 are Appell’s double hypergeometric functions [8].

Now, in (30), replacing ρ by δ +i and z by -y and using (18), we get the following families of generating functions for Jacobi polynomials:

n=0(λ)n(αβ)nPn(αn,βn)(x)F4(λ+n,γ;δ,δ+i;y,y)tn=[1(1x)t2]λn=0p=0(λ)n+2p(α)n(γ)2p(αβ)n(δ)2pn!(2p)![2t2(1x)t]n[2y2(1x)t]2p×{Ai22pΓ(12)Γ(δ+i)Γ(δ+2p)Γ(δ+2p+12(i+|i|))Γ(p+12i+12[1+i2])Γ(p+δ+12i)+Bi22pΓ(12)Γ(δ+i)Γ(δ+2p)Γ(δ+2p+12(i+|i|))Γ(p+12i[i2])Γ(p+δ12+12i)}+n=0p=0(λ)n+2p+1(α)n(γ)2p+1(αβ)n(δ)2p+1n!(2p+1)![2t2(1x)t]n[2y2(1x)t]2p+1×{Ai22p+1Γ(12)Γ(δ+i)Γ(δ+2p+1)Γ(δ+2p+1+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12+δ+12i)+Bi22p+1Γ(12)Γ(δ+i)Γ(δ+2p+1)Γ(δ+2p+1+12(i+|i|))Γ(p12+12i[i2])Γ(p+δ+12i)}$$\begin{equation}\label{equation32} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_4(\lambda+n,\gamma;\delta,\delta+i;y,-y)t^n \nonumber \\ = \bigg[1-\frac{(1-x)t}{2}\bigg]^{-\lambda}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty} \frac{(\lambda)_{n+2p}(-\alpha)_n(\gamma)_{2p}}{(-\alpha-\beta)_n(\delta)_{2p}~n!~(2p)!}\bigg[\frac{-2t}{2-(1-x)t}\bigg]^n\bigg[\frac{2y}{2-(1-x)t}\bigg]^{2p} \nonumber \\ \times \biggr \{ A'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(\delta+i)\Gamma(\delta+2p)}{\Gamma(\delta+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(p+\delta+\frac{1}{2}i)} \nonumber \\ +B'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(\delta+i)\Gamma(\delta+2p)}{\Gamma(\delta+2p+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+\delta-\frac{1}{2}+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(\lambda)_{n+2p+1}(-\alpha)_n(\gamma)_{2p+1}}{(-\alpha-\beta)_n(\delta)_{2p+1}~n!~(2p+1)!}\bigg[\frac{-2t}{2-(1-x)t}\bigg]^n\bigg[\frac{2y}{2-(1-x)t}\bigg]^{2p+1} \nonumber \\ \times \biggr \{ A''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(\delta+i)\Gamma(\delta+2p+1)}{\Gamma(\delta+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(p+\frac{1}{2}+\delta+\frac{1}{2}i)}\nonumber \\ +B''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(\delta+i)\Gamma(\delta+2p+1)}{\Gamma(\delta+2p+1+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(p+\delta+\frac{1}{2}i)} \biggl \} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

Next, in (31), replacing γ by ρ -i and z by -y and using (19), we get the following families of generating functions for Jacobi polynomials:

n=0(λ)n(αβ)nPn(αn,βn)(x)F1(λ+n,ρi,ρ;δ;y,y)tn=[1(1x)t2]λn=0p=0(λ)n+2p(α)n(ρi)2p(αβ)n(δ)2pn!(2p)![2t2(1x)t]n[2y2(1x)t]2p×{Ei22pΓ(12)Γ(12pρ+i)Γ(1ρ)Γ(1ρ+12(i+|i|))Γ(p+12i+12[1+i2])Γ(1pρ+12i)+Fi22pΓ(12)Γ(12pρ+i)Γ(1ρ)Γ(1ρ+12(i+|i|))Γ(p+12i[i2])Γ(p+12ρ+12i)}+n=0p=0(λ)n+2p+1(α)n(ρi)2p+1(αβ)n(δ)2p+1n!(2p+1)![2t2(1x)t]n[2y2(1x)t]2p+1×{Ei22p+1Γ(12)Γ(2pρ+i)Γ(1ρ)Γ(1ρ+12(i+|i|))Γ(p+12i[1+i2])Γ(p+12ρ+12i)+Fi22p+1Γ(12)Γ(2pρ+i)Γ(1ρ)Γ(1ρ+12(i+|i|))Γ(p12+12i[i2])Γ(pρ+12i)}$$\begin{equation}\sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_1(\lambda+n,\rho-i,\rho;\delta;y,-y)t^n \nonumber \\ = \bigg[1-\frac{(1-x)t}{2}\bigg]^{-\lambda}\sum_{n=0}^{\infty}\sum_{p=0}^{\infty} \frac{(\lambda)_{n+2p}(-\alpha)_n(\rho-i)_{2p}}{(-\alpha-\beta)_n(\delta)_{2p}~n!~(2p)!}\bigg[\frac{-2t}{2-(1-x)t}\bigg]^n\bigg[\frac{2y}{2-(1-x)t}\bigg]^{2p} \nonumber \\ \times \biggr \{ E'_i \frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1-2p-\rho+i)\Gamma(1-\rho)}{\Gamma(1-\rho+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i+\frac{1}{2}-\big [\frac{1+i}{2}\big ])\Gamma(1-p-\rho+\frac{1}{2}i)} \nonumber \\ +F'_i\frac{2^{2p}\Gamma(\frac{1}{2})\Gamma(1-2p-\rho+i)\Gamma(1-\rho)}{\Gamma(1-\rho+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p+\frac{1}{2}-\rho+\frac{1}{2}i)}\biggl \} \nonumber \\ +\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(\lambda)_{n+2p+1}(-\alpha)_n(\rho-i)_{2p+1}}{(-\alpha-\beta)_n(\delta)_{2p+1}~n!~(2p+1)!}\bigg[\frac{-2t}{2-(1-x)t}\bigg]^n\bigg[\frac{2y}{2-(1-x)t}\bigg]^{2p+1} \nonumber \\ \times \biggr \{ E''_i \frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-\rho+i)\Gamma(1-\rho)}{\Gamma(1-\rho+\frac{1}{2}(i+|i|))\Gamma(-p+\frac{1}{2}i-\big [\frac{1+i}{2}\big ])\Gamma(-p+\frac{1}{2}-\rho+\frac{1}{2}i)}\nonumber \\ +F''_i\frac{2^{2p+1}\Gamma(\frac{1}{2})\Gamma(-2p-\rho+i)\Gamma(1-\rho)}{\Gamma(1-\rho+\frac{1}{2}(i+|i|))\Gamma(-p-\frac{1}{2}+\frac{1}{2}i-\big [\frac{i}{2}\big ])\Gamma(-p-\rho+\frac{1}{2}i)} \biggl \} \end{equation}$$

for (i = 0, ±1, ±2, ±3, ±4, ±5).

Now, we mention some interesting special cases of the results (32) and (33) and we using in each case the results (20)–(23).

Taking i = 0 in (32) and (33), we get

n=0(λ)n(αβ)nPn(αn,βn)(x)F4(λ+n,γ;δ,δ;y,y)tn=(1(1x)t2)λX1:2;10:3;1λ:12γ,12γ+12;α;:δ,12δ,12δ+12;αβ;(2y2(1x)t)2,2t2(1x)t$$\begin{equation}\label{equation34} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_4(\lambda+n,\gamma;\delta,\delta;y,-y)t^n \nonumber \\ =\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} X \begin{array}{c} 1:2;1 \\ 0:3;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\frac{1}{2}\gamma,\frac{1}{2}\gamma+\frac{1}{2}&;&-\alpha&; \\ \\ -&:&\delta,\frac{1}{2}\delta,\frac{1}{2}\delta+\frac{1}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} -\bigg(\frac{2y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \end{equation}$$

and

n=0(λ)n(αβ)nPn(αn,βn)(x)F1(λ+n,ρ,ρ;δ;y,y)tn=(1(1x)t2)λX1:1;10:2;1λ:ρ;α;:12δ,12δ+12;αβ;(y2(1x)t)2,2t2(1x)t.$$\begin{equation}\label{equation35} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_1(\lambda+n,\rho,\rho;\delta;y,-y)t^n\nonumber \\ =\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} X \begin{array}{c} 1:1;1 \\ 0:2;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\rho&;&-\alpha&; \\ \\ -&:&\frac{1}{2}\delta,\frac{1}{2}\delta+\frac{1}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} \bigg(\frac{y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right]. \end{equation}$$

Taking i = 1 in (32) and (33), we get

n=0(λ)n(αβ)nPn(αn,βn)(x)F4(λ+n,γ;δ,δ+1;y,y)tn=(1(1x)t2)λ{X1:2;10:3;1λ:12γ,12γ+12;α;:δ,12δ+12,12δ+1;αβ;(2y2(1x)t)2,2t2(1x)t+2λγyδ(δ+1)(2t+xt)×X1:2;10:3;1λ+1:12γ+12,12γ+1;α;:δ+1,12δ+1,12δ+32;αβ;(2y2(1x)t)2,2t2(1x)t}$$\begin{align*} &\sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_4(\lambda+n,\gamma;\delta,\delta+1;y,-y)t^n \\ &=\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} \Bigg\{ X \begin{array}{c} 1:2;1 \\ 0:3;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\frac{1}{2}\gamma,\frac{1}{2}\gamma+\frac{1}{2}&;&-\alpha&; \\ \\ -&:&\delta,\frac{1}{2}\delta+\frac{1}{2},\frac{1}{2}\delta+1&;&-\alpha-\beta&; \end{array} \begin{array}{c} -\bigg(\frac{2y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \\ &+\frac{2\lambda \gamma y}{\delta(\delta+1)(2-t+xt)} \times X \begin{array}{c} 1:2;1 \\ 0:3;1 \end{array} \left[ \begin{array}{cccccc} \lambda+1&:&\frac{1}{2}\gamma+\frac{1}{2},\frac{1}{2}\gamma+1&;&-\alpha&; \\ \\ -&:&\delta+1,\frac{1}{2}\delta+1,\frac{1}{2}\delta+\frac{3}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} -\bigg(\frac{2y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \Bigg\} \end{align*}$$

and

n=0(λ)n(αβ)nPn(αn,βn)(x)F1(λ+n,ρ1,ρ;δ;y,y)tn=(1(1x)t2)λ{X1:1;10:2;1λ:ρ;α;:12δ,12δ+12;αβ;(y2(1x)t)2,2t2(1x)t+2λyδ(2t+xt)X1:1;10:2;1λ+1:ρ;α;:12δ+12,12δ+1;αβ;(y2(1x)t)2,2t2(1x)t}.$$\begin{equation}\label{equation37} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_1(\lambda+n,\rho-1,\rho;\delta;y,-y)t^n \nonumber \\ =\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} \Bigg\{ X \begin{array}{c} 1:1;1 \\ 0:2;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\rho&;&-\alpha&; \\ \\ -&:&\frac{1}{2}\delta,\frac{1}{2}\delta+\frac{1}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} \bigg(\frac{y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \nonumber \\ +\frac{2\lambda y}{\delta(2-t+xt)} X \begin{array}{c} 1:1;1 \\ 0:2;1 \end{array} \left[ \begin{array}{cccccc} \lambda+1&:&\rho&;&-\alpha&; \\ \\ -&:&\frac{1}{2}\delta+\frac{1}{2},\frac{1}{2}\delta+1&;&-\alpha-\beta&; \end{array} \begin{array}{c} \bigg(\frac{y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \Bigg\}. \end{equation}$$

Taking i = -1 in (32) and (33), we get

n=0(λ)n(αβ)nPn(αn,βn)(x)F4(λ+n,γ;δ,δ1;y,y)tn=(1(1x)t2)λ{X1:2;10:3;1λ:12γ,12γ+12;α;:δ1,12δ,12δ+12;αβ;(2y2(1x)t)2,2t2(1x)tλγyδ(2t+xt)X1:2;10:3;1λ+1:12γ+12,12γ+1;α;:δ,12δ+12,δ+1;αβ;(2y2(1x)t)2,2t2(1x)t}$$\begin{equation} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_4(\lambda+n,\gamma;\delta,\delta-1;y,-y)t^n\nonumber \\ =\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} \Bigg\{ X \begin{array}{c} 1:2;1 \\ 0:3;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\frac{1}{2}\gamma,\frac{1}{2}\gamma+\frac{1}{2}&;&-\alpha&; \\ \\ -&:&\delta-1,\frac{1}{2}\delta,\frac{1}{2}\delta+\frac{1}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} -\bigg(\frac{2y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \nonumber \\ -\frac{\lambda \gamma y}{\delta(2-t+xt)} X \begin{array}{c} 1:2;1 \\ 0:3;1 \end{array} \left[ \begin{array}{cccccc} \lambda+1&:&\frac{1}{2}\gamma+\frac{1}{2},\frac{1}{2}\gamma+1&;&-\alpha&; \\ \\ -&:&\delta,\frac{1}{2}\delta+\frac{1}{2},\delta+1&;&-\alpha-\beta&; \end{array} \begin{array}{c} -\bigg(\frac{2y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \Bigg\} \end{equation}$$

and

n=0(λ)n(αβ)nPn(αn,βn)(x)F1(λ+n,ρ+1,ρ;δ;y,y)tn=(1(1x)t2)λ{X1:1;10:2;1λ:ρ+1;α;:12δ,12δ+12;αβ;(y2(1x)t)2,2t2(1x)t+2λyδ(2t+xt)X1:1;10:2;1λ+1:ρ+1;α;:12δ+12,12δ+1;αβ;(y2(1x)t)2,2t2(1x)t}.$$\begin{equation} \sum_{n=0}^{\infty}\frac{(\lambda)_n}{(-\alpha-\beta)_n} P_n^{(\alpha-n,\beta-n)}(x)F_1(\lambda+n,\rho+1,\rho;\delta;y,-y)t^n \nonumber \\ =\bigg(1-\frac{(1-x)t}{2}\bigg)^{-\lambda} \Bigg\{ X \begin{array}{c} 1:1;1 \\ 0:2;1 \end{array} \left[ \begin{array}{cccccc} \lambda&:&\rho+1&;&-\alpha&; \\ \\ -&:&\frac{1}{2}\delta,\frac{1}{2}\delta+\frac{1}{2}&;&-\alpha-\beta&; \end{array} \begin{array}{c} \bigg(\frac{y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \nonumber \\ +\frac{2\lambda y}{\delta(2-t+xt)} X \begin{array}{c} 1:1;1 \\ 0:2;1 \end{array} \left[ \begin{array}{cccccc} \lambda+1&:&\rho+1&;&-\alpha&; \\ \\ -&:&\frac{1}{2}\delta+\frac{1}{2},\frac{1}{2}\delta+1&;&-\alpha-\beta&; \end{array} \begin{array}{c} \bigg(\frac{y}{2-(1-x)t}\bigg)^2,\frac{-2t}{2-(1-x)t} \end{array} \right] \Bigg\}. \end{equation}$$

The other special cases of (32) and (33) can also be obtained in the similar manner.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics