Open Access

Attractors for a nonautonomous reaction-diffusion equation with delay


Cite

Introduction and statement of the problem

We consider the following nonautonomous functional reaction-diffusion equation

βˆ‚βˆ‚tu(t,x)βˆ’Ξ”u(t,x)=f(u(t,x))+b(t,ut)(x)+g(t,x)in(Ο„,∞)Γ—Ξ©,u=0on(Ο„,∞)Γ—βˆ‚Ξ©,u(Ο„,x)=u0(x),Ο„βˆˆRandx∈Ω,u(Ο„+ΞΈ,x)=Ο†(ΞΈ,x),θ∈[βˆ’r,0]andx∈Ω,$$\begin{array}{} \displaystyle \left\{ \begin{array}{l} \frac{\partial}{\partial t} u(t,x) - \Delta u(t,x) = f(u(t,x)) + b(t,u_t)(x) + g(t,x)\; \mbox{in}\; (\tau, \infty) \times \Omega\,,\\ u= 0 \;\mbox{on}\; (\tau, \infty) \times \partial{\Omega}\,,\\ u(\tau,x)=u^0(x),\; \tau \in \mathbb{R}\; \mbox{and} \;x \in \Omega \,,\\ u(\tau+\theta,x)= \varphi(\theta,x),\; \theta \in [-r,0] \;\mbox{and}\; x \in \Omega\,, \end{array} \right. \end{array}$$

where Ξ© βŠ‚ ℝℕ is a bounded domain with smooth boundary βˆ‚ Ξ©, Ο„ ∈ ℝ, u0 ∈ L2(Ξ©) is the initial condition in Ο„ and Ο† ∈ L2([–r,0];L2(Ξ©)) is also the initial condition in [τ–r,Ο„],r > 0 is the length of the delay effect. For the rest we assume following assumptions conditions:

H1) Concerning the nonlinearity, we assume that f ∈ C1(ℝ, ℝ) there exist positive constants c, ΞΌ0, ΞΌ1, k and p > 2 N ≀ 2ppβˆ’2$\begin{array}{} \frac{2p}{p-2} \end{array}$ such that

βˆ’cβˆ’ΞΌ0|u|p≀f(u)u≀cβˆ’ΞΌ1|u|pβˆ€u∈R,$$\begin{array}{} \displaystyle -c - \mu_0 \vert u \vert^p \leq f(u)u\leq c - \mu_1 \vert u \vert^p \; \forall u \in \mathbb{R}, \end{array}$$

f(u)βˆ’f(v)(uβˆ’v)≀k(uβˆ’v)2βˆ€u,v∈R.$$\begin{array}{} \displaystyle \left(f(u)-f(v)\right)(u-v) \leq k (u-v)^2 \; \forall u, v \in \mathbb{R}. \end{array} $$

Let us denote by

F(u):=∫0uf(s)ds.$$\begin{array}{} \displaystyle F(u) := \int_{0}^{u} f(s) ds\,. \end{array}$$

From (1.2), there exist positive constants l,cβ€² ΞΌ0β€²,ΞΌ1β€²$\begin{array}{} \mu'_0, \mu'_1 \end{array}$ such that

|f(u)|≀l|u|pβˆ’1+1βˆ€u∈R,$$\begin{array}{} \displaystyle \vert f(u) \vert \leq l\left(\vert u \vert^{p-1} + 1\right)\; \forall u\in \mathbb{R}, \end{array}$$

βˆ’cβ€²βˆ’ΞΌ0β€²|u|p≀F(u)≀cβ€²βˆ’ΞΌ1β€²|u|pβˆ€u∈R.$$\begin{array}{} \displaystyle -c' - \mu'_0 \vert u \vert^p \leq F(u)\leq c' - \mu'_1 \vert u \vert^p \; \forall u \in \mathbb{R}. \end{array}$$

H2) The operator b : ℝ Γ— L2([–r,0];L2(Ξ©)) β†’ L2(Ξ©) is a time-dependent external force with delay, such that

For all Ο• ∈ L2([–r,0]; L2(Ξ©)) the function β„βˆ‹ t ↦ b(t,Ο•) ∈ L2(Ξ©) is measurable;

b(t,0) = 0 for all t ∈ ℝ;

βˆƒ Lb > 0 s.t βˆ€ t ∈ ℝ and βˆ€ Ο•1, Ο•2 ∈ L2([–r,0];L2(Ξ©));

βˆ₯b(t,Ο•1)βˆ’b(t,Ο•2)βˆ₯≀Lbβˆ₯Ο•1βˆ’Ο•2βˆ₯L2([βˆ’r,0];L2(Ξ©));$$\begin{array}{} \displaystyle \Vert b(t,\phi_1)-b(t,\phi_2)\Vert \leq L_b \Vert \phi_1-\phi_2 \Vert_{L^2([-r,0];L^2(\Omega))}\,; \end{array}$$

βˆƒ Cb > 0 s.t βˆ€ t β‰₯ Ο„, and βˆ€ u, v ∈ L2([Ο„-r, t]; L2(Ξ©));

βˆ«Ο„tβˆ₯b(s,us)βˆ’b(s,vs)βˆ₯2ds≀Cbβˆ«Ο„βˆ’rtβˆ₯u(s)βˆ’v(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \int_{\tau}^{t}\Vert b(s,u_s)-b(s,v_s)\Vert^2 ds \leq C_b \int_{\tau-r}^{t}\Vert u(s)-v(s) \Vert^2 ds\,. \end{array}$$

Remark 1

From (I)-(III), for T > Ο„ and u ∈ L2([τ–r,T];L2(Ξ©)) the function β„βˆ‹ t ↦ b(t,Ο•) ∈ L2(Ξ©) is measurable and belongs to L∞((Ο„,T);L2(Ξ©)).

H3) The function g ∈ Lloc2$\begin{array}{} L^2_{loc} \end{array}$ (ℝ; L2(Ξ©)) is an another nondelayed time-dependent external force.

For more details on differential equations with delay, we refer the reader to J. Wu [9] and J.K. Hale [5]. The purpose of this paper is to discuss the existence of pullback π’Ÿ-attractor in L2(Ξ©)Γ— L2([–r,0];L2(Ξ©)) by using a priori estimates of solutions to the problem (1.1).

This work is motivated by the work of T. Caraballo and J. Real. [1], where they proved the existence of pullback attractors for the following 2D-Navier Stokes model with delays:

βˆ‚uβˆ‚tβˆ’Ξ½Ξ”u+βˆ‘i=12uiβˆ‚uβˆ‚xi=fβˆ’βˆ‡p+g(t,ut)in(Ο„,∞)Γ—Ξ©,divu=0in(Ο„,∞)Γ—Ξ©,u=0on(Ο„,∞)Γ—βˆ‚Ξ©,u(Ο„,x)=u0(x),x∈Ω,u(t,x)=Ο•(tβˆ’Ο„,x),t∈(Ο„βˆ’h,Ο„)andx∈Ω,$$\begin{array}{} \displaystyle \left\{ \begin{array}{l} \frac{\partial u}{\partial t} - \nu\Delta u + \sum_{i=1}^{2} u_i \frac{\partial u}{\partial x_i}= f - \nabla p + g(t,u_t)\; \mbox{in}\; (\tau, \infty) \times \Omega\,,\\ div\; u= 0 \;\mbox{in}\; (\tau, \infty) \times \Omega\,,\\ u= 0 \;\mbox{on}\; (\tau, \infty) \times \partial\,{\Omega}\,,\\ u(\tau,x)=u_0(x), \;x \in \Omega \,,\\ u(t,x)= \phi(t-\tau,x),\; t \in (\tau-h,\tau) \;\mbox{and}\; x \in \Omega\,, \end{array} \right. \end{array}$$

where Ξ½ > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the pressure, Ο„ ∈ ℝ the initial time, u0 the initial velocity field, f a nondelayed external force field, g another external force with delay and Ο• the initial condition in (–h,0), where h is a fixed positive number.

On the other hand, the problem (1.1) without critical nonlinearity was treated by J. Li and J. Huang in [6], where they proved the existence of uniform attractor for the following non-autonomous parabolic equation with delays:

βˆ‚u(t,x)βˆ‚t+Au(t,x)+bu(t,x)=F(ut)(x)+g(t,x)xinΞ©,u(Ο„,x)=u0(x),u(Ο„+ΞΈ,x)=Ο•(ΞΈ,x),θ∈(βˆ’r,0).$$\begin{array}{} \displaystyle \left\{ \begin{array}{l} \frac{\partial u(t,x)}{\partial t} + A u(t,x) + b u(t,x) = F(u_t)(x) + g(t,x)\; x\;\mbox{in}\; \Omega\,,\\ u(\tau,x)=u_0(x),\; u(\tau+\theta,x)= \phi(\theta,x),\; \theta \in (-r,0) \,. \end{array} \right. \end{array}$$

Here Ξ© is a bounded domain in ℝn0 with smooth boundary, b β‰₯ 0, A is a densely-defined self-adjoint positive linear operator with domain D(A)βŠ‚ L2(Ξ©) and with compact resolvent, F is the nonlinear term which is locally Lipschitz continuous for the initial condition, g is an external force.

In [3], J.Garcia-Luengo and P.Marin-Rubio treated the following reaction-diffusion equation with non-autonomous force in H–1 and delays under measurability conditions on the driving delay term:

βˆ‚uβˆ‚tβˆ’Ξ”u=f(u)+g(t,ut)+k(t)in(Ο„,∞)Γ—Ξ©,u=0on(Ο„,∞)Γ—βˆ‚Ξ©,u(Ο„+s,x)=Ο•(s,x),s∈[βˆ’r,0]andx∈Ω,$$\begin{array}{} \displaystyle \left\{ \begin{array}{l} \frac{\partial u}{\partial t} - \Delta u = f(u) + g(t,u_t) + k(t)\; \mbox{in}\; (\tau, \infty) \times \Omega\,,\\ u= 0 \;\mbox{on}\; (\tau, \infty) \times \partial\,{\Omega}\,,\\ u(\tau+s,x)= \phi(s,x),\; s \in [-r,0] \;\mbox{and}\; x \in \Omega\,, \end{array} \right. \end{array}$$

where Ο„ ∈ ℝ, f ∈ C(ℝ) the nonlinear term with critical exponent, g is an external force with delay, k ∈ Lloc2$\begin{array}{} L^{2}_{loc} \end{array}$ (ℝ;H–1(Ξ©)) a time-dependent force, Ο• the initial condition and h the lenght of the delay effect. In this work, the authors checked the existence of pullback π’Ÿ-attractor in C([–h,0]; L2(Ξ©)).

This paper is organized as follows. In section 2, we will prove the existence of weak solutions to the problem (1.1) by using the Faedo-Galerkin approximations, as well as the uniqueness and the continuous dependence of solution with respect to initial conditions. In section 3, we recall some definitions and abstract results on pullback π’Ÿ-attractor. Then we can prove the existence of pullback π’Ÿ-attractor for the nonautonomous problem with delay.

Existence and uniqueness of solution

First we give the concept of the solution.

Definition 1

A weak solution of(1.1)is a function u ∈ L2([τ–r,T];L2(Ξ©)) such that for all T > Ο„ we have

u∈L2((Ο„,T);H01(Ξ©))∩Lp((Ο„,T);Lp(Ξ©))∩C([Ο„,T];L2(Ξ©))$$\begin{array}{} \displaystyle u \in L^2((\tau,T);H^1_0(\Omega)) \cap L^p((\tau,T);L^p(\Omega)) \cap C([\tau,T]; L^2(\Omega)) \end{array}$$

and

βˆ‚uβˆ‚t∈L2([Ο„,T];L2(Ξ©)),$$\begin{array}{} \displaystyle \frac{\partial u}{\partial t} \in L^2([\tau, T]; L^2(\Omega))\,, \end{array}$$

with u(t) = Ο†(t–τ), for t ∈ [τ–r,Ο„], and it satisfies

βˆ«Ο„Tβˆ’γ€ˆu,v′〉+βˆ«Ο„Tβˆ«Ξ©βˆ‡uβˆ‡v=βˆ«Ο„T∫Ωf(u)v+βˆ«Ο„Tγ€ˆb(t,ut),v〉 +βˆ«Ο„T∫Ωgv+γ€ˆu0,v(Ο„)〉,$$\begin{array}{} \displaystyle \int^{T}_{\tau} - \langle u,v'\rangle + \int_{\tau}^{T}\int_{\Omega} \nabla u \nabla v = \int_{\tau}^{T}\int_{\Omega} f(u)v + \int_{\tau}^{T} \langle b(t,u_t), v\rangle \nonumber\\ \displaystyle \qquad \qquad\qquad\qquad\qquad\qquad~+ \int_{\tau}^{T}\int_{\Omega} gv + \langle u^0,v(\tau)\rangle \,, \end{array}$$

for all test functions v ∈ L2([Ο„, T]; H01$\begin{array}{} \displaystyle H^{1}_{0} \end{array}$ (Ξ©)) and vβ€²βˆˆ L2([Ο„, T]; H–1(Ξ©)) such that v(T) = 0.

Theorem 1

Assume that g ∈ Llog2$\begin{array}{} \displaystyle L^{2}_{log} \end{array}$ (ℝ;L2(Ξ©)), b and f satisfy (I)-(IV) and(1.2)-(1.5)respectively and ifΞ»1 > 1 + Cb/2, Then for all T > Ο„ and all (u0,Ο†) in L2(Ξ©)Γ— L2([–r,0];L2(Ξ©)), there exists a unique weak solution u to the problem(1.1).

Proof

Let us consider {ek}k β‰₯ 1, the complete basis of H01$\begin{array}{} \displaystyle H^{1}_{0} \end{array}$ (Ξ©) which is given by the orthonormal eigenfunctions of Ξ” in L2(Ξ©). We consider

um(t)=βˆ‘k=1mΞ³k,m(t)ek,m=1,2,…$$\begin{array}{} \displaystyle u^m(t) = \sum_{k=1}^{m} \gamma_{k,m}(t) e_k\,, \; m = 1, 2, \ldots \end{array}$$

which is the approximate solutions of Faedo-Galerkin of order m, that is

γ€ˆdumdt,ek〉+γ€ˆΞ”um,ek〉=γ€ˆf(um),ek〉+γ€ˆb(t,utm),ek〉+γ€ˆg,ekγ€‰γ€ˆum(Ο„),ek〉=γ€ˆPmu0,ek〉=γ€ˆu0,ek〉i.e.Pmum(Ο„)β†’u0inL2(Ξ©)γ€ˆum(Ο„+ΞΈ),ek〉=γ€ˆPmΟ†(ΞΈ),ek〉=γ€ˆΟ†(ΞΈ),ekγ€‰βˆ€ΞΈβˆˆ(βˆ’r,0)$$\begin{array}{} \displaystyle \left\{ \begin{array}{l} \langle \frac{du^m}{dt},e_k\rangle + \langle \Delta u^m , e_k\rangle = \langle f(u^m), e_k\rangle+\langle b(t,u_{t}^{m}), e_k\rangle + \langle g,e_k\rangle \\ \langle u^m(\tau),e_k\rangle= \langle P_m u^0 ,e_k\rangle=\langle u^0,e_k\rangle \; \mbox{i.e.}\; P_mu^{m}(\tau) \to u^{0}\; \mbox{in}\; L^2(\Omega) \\ \langle u^{m}(\tau + \theta),e_k\rangle=\langle P_m \varphi(\theta),e_k\rangle=\langle \varphi(\theta),e_k\rangle \; \forall \theta \in (-r,0) \end{array}\right. \end{array}$$

for all k = 1 … m. Where Ξ³k,m(t) = γ€ˆ um(t), ek 〉 denote the Fourier coefficients; such that Ξ³m,k ∈ C1((Ο„, T); ℝ) ∩ L2((τ–r, T), ℝ), Ξ³k,mβ€²$\begin{array}{} \gamma'_{k,m} \end{array}$ (t) is absolutely continuous, and Pmu(t) = βˆ‘k=1m$\begin{array}{} \sum^{m}_{k=1} \end{array}$ γ€ˆu,ek〉 ek is the orthogonal projection of L2(Ξ©) and H01$\begin{array}{} \displaystyle H^{1}_{0} \end{array}$ (Ξ©) in Vm = span{e1, …, em}.

It is well-known that the above finite-dimensional delayed system is well-posed (e.g. cf. [2]), at least locally. We will provide a priori estimates for the Faedo-Galerkin approximate solutions.

For all m ∈ β„•βˆ—and all T > Ο„, the sequence {um} is bounded in

L∞((Ο„,T);L2(Ξ©))∩L2((Ο„,T);H01(Ξ©))∩Lp((Ο„,T);Lp(Ξ©)).$$\begin{array}{} \displaystyle L^{\infty} ((\tau, T);L^2(\Omega))\cap L^{2} ((\tau, T);H^1_0(\Omega)) \cap L^{p} ((\tau, T);L^p(\Omega))\,. \end{array}$$

Multiplying (1.1) by um and integrating over Ξ©, we obtain

12ddtβˆ₯um(t)βˆ₯2+βˆ₯βˆ‡um(t)βˆ₯2=∫Ωf(um)um+∫Ωb(t,utm)um+∫Ωgum.$$\begin{array}{} \displaystyle \frac{1}{2} \frac{d}{dt} \Vert u^m (t) \Vert^2 + \Vert \nabla u^m (t) \Vert^2 = \int_{\Omega} f(u^m)u^m + \int_{\Omega} b(t,u_t^m)u^m + \int_{\Omega} gu^m \,. \end{array}$$

Using the hypothesis (1.2) and the Young inequality, we get

12ddtβˆ₯um(t)βˆ₯2+βˆ₯βˆ‡um(t)βˆ₯2≀c|Ξ©|βˆ’ΞΌ1βˆ₯um(t)βˆ₯p+12βˆ₯b(t,utm)βˆ₯2+12βˆ₯um(t)βˆ₯2+12βˆ₯g(t)βˆ₯2+12βˆ₯um(t)βˆ₯2.$$\begin{array}{} \displaystyle \quad\frac{1}{2} \frac{d}{dt} \Vert u^m (t) \Vert^2 + \Vert \nabla u^m (t) \Vert^2 \\ \displaystyle \leq c\vert \Omega \vert - \mu_1\Vert u^m(t) \Vert^p + \frac{1}{2}\Vert b(t, u_t^m) \Vert^2 + \frac{1}{2} \Vert u^m(t) \Vert^2 + \frac{1}{2}\Vert g(t)\Vert^2 + \frac{1}{2}\Vert u^m(t) \Vert^2\,. \end{array}$$

So, one has

ddtβˆ₯um(t)βˆ₯2+2βˆ₯βˆ‡um(t)βˆ₯2+2ΞΌ1βˆ₯um(t)βˆ₯p≀2c|Ξ©|+βˆ₯b(t,utm)βˆ₯2+βˆ₯g(t)βˆ₯2+βˆ₯um(t)βˆ₯2.$$\begin{array}{} \displaystyle \quad\frac{d}{dt} \Vert u^m (t) \Vert^2 + 2\Vert \nabla u^m (t) \Vert^2 + 2\mu_1\Vert u^m(t) \Vert^p\\ \leq 2c\vert \Omega \vert + \Vert b(t, u_t^m) \Vert^2 + \Vert g(t)\Vert^2 + \Vert u^m(t) \Vert^2\,. \end{array}$$

After integrating this last estimate over [Ο„,t], Ο„ ≀ t ≀ T, we use (II) and (IV), so we get

βˆ₯um(t)βˆ₯2+2βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds+2ΞΌ1βˆ«Ο„tβˆ₯um(s)βˆ₯pds≀2c|Ξ©|(tβˆ’Ο„)+βˆ₯um(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rtβˆ₯um(s)βˆ₯2ds+βˆ«Ο„tβˆ₯g(s)βˆ₯2ds+βˆ«Ο„tβˆ₯um(s)βˆ₯2ds,≀2c|Ξ©|(tβˆ’Ο„)+βˆ₯um(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+Cbβˆ«Ο„tβˆ₯um(s)βˆ₯2ds+βˆ«Ο„tβˆ₯g(s)βˆ₯2ds+βˆ«Ο„tβˆ₯um(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert u^m (t) \Vert^2 + 2\int_{\tau}^{t} \Vert \nabla u^m (s) \Vert^2 ds + 2\mu_1 \int_{\tau}^{t} \Vert u^m(s) \Vert^p ds \\ \displaystyle \leq 2c \vert \Omega \vert (t-\tau) + \Vert u^m (\tau) \Vert^2 + C_b \int_{\tau -r}^{t} \Vert u^m(s) \Vert^2 ds\\ \displaystyle + \int_{\tau}^{t} \Vert g(s)\Vert^2 ds + \int_{\tau}^{t} \Vert u^m(s) \Vert^2 ds \,,\\ \displaystyle\leq 2c\vert \Omega \vert (t-\tau) + \Vert u^m (\tau) \Vert^2 + C_b\int_{\tau -r}^{\tau} \Vert u^m(s) \Vert^2 ds + C_b\int_{\tau}^{t} \Vert u^m(s) \Vert^2 ds \\ \displaystyle + \int_{\tau}^{t} \Vert g(s)\Vert^2 ds + \int_{\tau}^{t} \Vert u^m(s) \Vert^2 ds \,.\end{array}$$

By the fact that Ξ»1 β€– uβ€– 2 ≀ β€– βˆ‡ u β€– 2, one has

βˆ₯um(t)βˆ₯2+2βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds+2ΞΌ1βˆ«Ο„tβˆ₯um(s)βˆ₯pds≀2c|Ξ©|(tβˆ’Ο„)+βˆ₯um(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+CbΞ»1βˆ’1βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds+βˆ«Ο„tβˆ₯g(s)βˆ₯2ds+Ξ»1βˆ’1βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert u^m (t) \Vert^2 + 2\int_{\tau}^{t} \Vert \nabla u^m (s) \Vert^2 ds + 2\mu_1\int_{\tau}^{t} \Vert u^m(s) \Vert^p ds\\ \displaystyle \leq 2c\vert \Omega \vert (t-\tau) + \Vert u^m (\tau) \Vert^2 + C_b\int_{\tau -r}^{\tau} \Vert u^m(s) \Vert^2 ds + C_b\lambda_1^{-1}\int_{\tau}^{t} \Vert \nabla u^m(s) \Vert^2 ds \\ \displaystyle + \int_{\tau}^{t} \Vert g(s)\Vert^2 ds + \lambda_1^{-1} \int_{\tau}^{t} \Vert \nabla u^m(s) \Vert^2 ds\,. \end{array}$$

Then, we find

βˆ₯um(t)βˆ₯2+(2βˆ’CbΞ»1βˆ’1βˆ’Ξ»1βˆ’1)βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds+2ΞΌ1βˆ«Ο„tβˆ₯um(s)βˆ₯pds≀2c|Ξ©|(tβˆ’Ο„)+βˆ₯um(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+βˆ«Ο„tβˆ₯g(s)βˆ₯2ds,≀2c|Ξ©|(Tβˆ’Ο„)+βˆ₯um(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+βˆ«Ο„tβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert u^m (t) \Vert^2 + (2-C_b\lambda_1^{-1}-\lambda_1^{-1})\int_{\tau}^{t} \Vert \nabla u^m (s) \Vert^2 ds + 2\mu_1\int_{\tau}^{t} \Vert u^m(s) \Vert^p ds \\ \displaystyle \leq 2c\vert \Omega \vert (t-\tau) +\Vert u^m (\tau) \Vert^2 + C_b\int_{\tau -r}^{\tau} \Vert u^m(s) \Vert^2 ds + \int_{\tau}^{t} \Vert g(s)\Vert^2 ds \,,\\ \displaystyle \leq 2c\vert \Omega \vert (T-\tau) +\Vert u^m (\tau) \Vert^2 + C_b\int_{\tau -r}^{\tau} \Vert u^m(s) \Vert^2 ds + \int_{\tau}^{t} \Vert g(s)\Vert^2 ds \,. \end{array}$$

Since g ∈ Llog2$\begin{array}{} L^{2}_{log} \end{array}$ (ℝ,L2(Ξ©)) and for Ξ»1 > 1+ Cb/2, we deduce by this last estimate that for all T > Ο„, the sequence

{um} is bounded inL∞((Ο„,T);L2(Ξ©))∩L2((Ο„,T);H01(Ξ©))∩Lp((Ο„,T);Lp(Ξ©)).$$\begin{array}{} \displaystyle \{u^m\}\;\mbox{ is bounded in}\; L^{\infty} ((\tau, T);L^2(\Omega))\cap L^{2} ((\tau, T);H^1_0(\Omega)) \cap L^{p} ((\tau, T);L^p(\Omega))\,. \end{array}$$

Also, the estimate (2.1) implies that the local solution can extended to the interval [Ο„, T].

{f(um)}isboundedinLq((Ο„,T);Lq(Ξ©)).$$\begin{array}{} \displaystyle \{f(u^m)\} \; {is\, bounded \,in}\; L^{q}((\tau, T);L^{q}(\Omega))\,. \end{array}$$

Using (1.4), we have

βˆ₯f(um(t)βˆ₯Lq(Ξ©)q=∫Ω|f(um(t,x))|qdx, ≀lq∫Ω|um(t,x)|pβˆ’1+1qdx.$$\begin{array}{} \displaystyle \Vert f(u^m(t) \Vert_{L^q(\Omega)}^q = \int_{\Omega}\vert f(u^m(t,x)) \vert^q dx\,,\\ \displaystyle \qquad \qquad\qquad~ \leq l^q\int_{\Omega}\left(\vert u^m(t,x) \vert^{p-1} + 1\right)^q dx\,. \end{array}$$

By the convexity of the power and the fact that p = q(p–1), one has

βˆ₯f(um(t))βˆ₯Lq(Ξ©)q≀2qβˆ’1lq∫Ω|um(t,x)|q(pβˆ’1)dx+2qβˆ’1lq|Ξ©|,≀2qβˆ’1lqβˆ₯um(t)βˆ₯Lp(Ξ©)q(pβˆ’1)+2qβˆ’1lq|Ξ©|,≀2qβˆ’1lqβˆ₯um(t)βˆ₯Lp(Ξ©)p+2qβˆ’1lq|Ξ©|.$$\begin{array}{} \displaystyle \Vert f(u^m(t)) \Vert_{L^q(\Omega)}^q \leq 2^{q-1}l^q\int_{\Omega}\vert u^m(t,x) \vert^{q(p-1)} dx + 2^{q-1}l^q \vert \Omega \vert \,,\\ \displaystyle \qquad\qquad\qquad\quad\leq 2^{q-1}l^q \Vert u^m(t) \Vert_{L^p(\Omega)}^{q(p-1)} + 2^{q-1}l^q \vert \Omega \vert \,,\\ \displaystyle \qquad\qquad\qquad\quad\leq 2^{q-1}l^q \Vert u^m(t) \Vert_{L^p(\Omega)}^p + 2^{q-1}l^q \vert \Omega \vert\,. \end{array}$$

Integrating this last estimate over [Ο„,t], Ο„ ≀ t ≀ T, one obtains

βˆ«Ο„tβˆ₯f(um(s))βˆ₯Lq(Ξ©)qds≀2qβˆ’1lqβˆ«Ο„tβˆ₯um(s)βˆ₯Lp(Ξ©)pds+2qβˆ’1lq|Ξ©|(tβˆ’Ο„)$$\begin{array}{} \displaystyle \int_{\tau}^{t}\Vert f(u^m(s)) \Vert_{L^q(\Omega)}^q ds \leq 2^{q-1}l^q \int_{\tau}^{t} \Vert u^m(s) \Vert_{L^p(\Omega)}^p ds + 2^{q-1}l^q \vert \Omega \vert(t-\tau) \end{array}$$

From (2.1) we deduce that the term βˆ«Ο„tβˆ₯um(s)βˆ₯Lp(Ξ©)p$\begin{array}{} \int_{\tau}^{t} \Vert u^m(s) \Vert_{L^p(\Omega)}^p \end{array}$ds is bounded, so by this last estimate we conclude that {f(um)} is bounded in Lq((Ο„, T);Lq(Ξ©)), for all T > Ο„.

βˆ‚βˆ‚tum$\begin{array}{} \left\{\frac{\partial }{\partial t}u^m\right\} \end{array}$is bounded in L2((Ο„,T);L2(Ξ©)).

Now, multiplying (1.1) by βˆ‚umβˆ‚t$\begin{array}{} \frac{\partial u^m}{\partial t} \end{array}$ and integrating over Ξ©, one has

βˆ’ddtum(t)2+12ddtβˆ₯βˆ‡um(t)βˆ₯2=∫Ωf(um)βˆ‚umβˆ‚t+∫Ωb(t,utm)βˆ‚umβˆ‚t+∫Ωgβˆ‚umβˆ‚t.$$\begin{array}{} \displaystyle \quad-\left\Vert\frac{d}{d t} u^m(t) \right \Vert^2 + \frac{1}{2} \frac{d}{dt} \Vert \nabla u^m(t) \Vert^2 \nonumber\\ \displaystyle = \int_{\Omega} f(u^m)\frac{\partial u^m}{\partial t}+ \int_{\Omega} b(t,u^m_t)\frac{\partial u^m}{\partial t} + \int_{\Omega} g\frac{\partial u^m}{\partial t}\,. \end{array}$$

On the other hand, we have

ddtF(u)=dFduβˆ‚uβˆ‚t,=f(u)βˆ‚uβˆ‚t.$$\begin{array}{} \displaystyle \frac{d}{d t} F(u) = \frac{dF}{d u} \,\frac{\partial u}{\partial t}\,,\\ \displaystyle \qquad\qquad= f(u) \, \frac{\partial u}{\partial t} \,. \end{array}$$

So

ddt∫ΩF(u)=∫Ωf(u)βˆ‚uβˆ‚t.$$\begin{array}{} \displaystyle \frac{d}{d t}\int_{\Omega} F(u) = \int_{\Omega} f(u)\frac{\partial u}{\partial t} \,. \end{array}$$

Using this last equality in (2.4), we find

ddtum(t)2+12ddtβˆ₯βˆ‡um(t)βˆ₯2=ddt∫ΩF(um)+∫Ωb(t,utm)βˆ‚umβˆ‚t+∫Ωgβˆ‚umβˆ‚t.$$\begin{array}{} \displaystyle \left\Vert\frac{d}{d t} u^m(t) \right \Vert^2 + \frac{1}{2} \frac{d}{dt} \Vert \nabla u^m(t) \Vert^2 = \frac{d}{dt} \int_{\Omega} F(u^m)+ \int_{\Omega} b(t,u^m_t)\frac{\partial u^m}{\partial t} + \int_{\Omega} g\frac{\partial u^m}{\partial t}\,. \end{array}$$

From (1.5) and Cauchy inequality, we have

ddtum(t)2+12ddtβˆ₯βˆ‡um(t)βˆ₯2,≀ddt∫Ω(cβ€²βˆ’ΞΌ1β€²|u(t,x)|p)dx+Ξ΅12βˆ₯b(t,utm)βˆ₯2+12Ξ΅1ddtum(t)2+Ξ΅22βˆ₯g(t)βˆ₯2+12Ξ΅2ddtum(t)2.$$\begin{array}{} \displaystyle \quad\left\Vert\frac{d}{d t} u^m(t) \right \Vert^2 + \frac{1}{2} \frac{d}{dt} \Vert \nabla u^m(t) \Vert^2 \,,\\ \displaystyle \leq \frac{d}{dt} \int_{\Omega} (c' - \mu'_1 \vert u(t,x) \vert^p) dx + \frac{\varepsilon_1}{2}\Vert b(t,u^m_t) \Vert^2 + \frac{1}{2 \varepsilon_1}\left\Vert \frac{d }{d t}u^m(t)\right\Vert^2 \\ \displaystyle + \frac{\varepsilon_2}{2}\Vert g(t) \Vert^2 + \frac{1}{2 \varepsilon_2}\left \Vert \frac{d}{d t} u^m(t) \right \Vert^2 \,. \end{array}$$

After simplification, one obtains

2βˆ’1Ξ΅1βˆ’1Ξ΅2ddtum(t)2+ddtβˆ₯βˆ‡um(t)βˆ₯2+2ΞΌ1β€²βˆ₯um(t)βˆ₯Lp(Ξ©)p≀Ρ1βˆ₯b(t,utm)βˆ₯2+Ξ΅2βˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \quad\left (2-\frac{1}{ \varepsilon_1}-\frac{1}{ \varepsilon_2}\right)\left\Vert\frac{d}{d t} u^m(t) \right\Vert^2 + \frac{d}{dt} \left(\Vert \nabla u^m(t) \Vert^2 + 2 \mu'_1 \Vert u^m(t) \Vert^p_{L^p(\Omega)}\right) \\ \leq {\varepsilon_1}\Vert b(t,u^m_t) \Vert^2 + {\varepsilon_2}\Vert g(t) \Vert^2 \,. \end{array}$$

We can choose Ξ΅1 = Ξ΅2 = 2 to get

ddtum(t)2+ddtβˆ₯βˆ‡um(t)βˆ₯2+2ΞΌ1β€²βˆ₯um(t)βˆ₯Lp(Ξ©)p≀2βˆ₯b(t,utm)βˆ₯2+2βˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \left\Vert\frac{d}{d t} u^m(t) \right\Vert^2 + \frac{d}{dt} \left(\Vert \nabla u^m(t) \Vert^2 + 2 \mu'_1 \Vert u^m(t) \Vert^p_{L^p(\Omega)}\right) \leq 2\Vert b(t,u^m_t) \Vert^2 + 2\Vert g(t) \Vert^2 \,. \end{array} $$

Integrating this last estimate over [Ο„,t] and using (II) and (IV), one has

βˆ«Ο„tddsum(s)2ds+βˆ₯βˆ‡um(t)βˆ₯2+2ΞΌ1β€²βˆ₯um(t)βˆ₯Lp(Ξ©)p≀βˆ₯βˆ‡um(Ο„)βˆ₯2+2ΞΌ1β€²βˆ₯um(Ο„)βˆ₯Lp(Ξ©)p+2Cbβˆ«Ο„βˆ’rtβˆ₯um(s)βˆ₯2ds+2βˆ«Ο„tβˆ₯g(s)βˆ₯2ds,≀βˆ₯βˆ‡um(Ο„)βˆ₯2+2ΞΌ1β€²βˆ₯um(Ο„)βˆ₯Lp(Ξ©)p+2Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+2Cbβˆ«Ο„tβˆ₯um(s)βˆ₯2ds+2βˆ«Ο„tβˆ₯g(s)βˆ₯2ds$$\begin{array}{} \displaystyle \quad \int_{\tau}^{t}\left\Vert\frac{d}{d s} u^m(s) \right\Vert^2 ds +\Vert \nabla u^m(t) \Vert^2 + 2 \mu'_1 \Vert u^m(t) \Vert^p_{L^p(\Omega)} \\ \displaystyle \leq \Vert \nabla u^m(\tau) \Vert^2 + 2 \mu'_1 \Vert u^m(\tau) \Vert^p_{L^p(\Omega)} + 2C_b\int_{\tau -r}^{t}\Vert u^m(s) \Vert^2 ds+ 2 \int_{\tau}^{t} \Vert g(s) \Vert^2 ds \,,\\ \displaystyle \leq \Vert \nabla u^m(\tau) \Vert^2 + 2 \mu'_1 \Vert u^m(\tau) \Vert^p_{L^p(\Omega)} + 2C_b\int_{\tau -r}^{\tau}\Vert u^m(s) \Vert^2 ds \\ \displaystyle + 2C_b\int_{\tau}^{t}\Vert u^m(s) \Vert^2 ds+ 2 \int_{\tau}^{t} \Vert g(s) \Vert^2 ds \end{array}$$

Since Ξ»1 β€– u β€–2 ≀ β€– βˆ‡uβ€–2, one has

βˆ«Ο„tddsum(s)2ds+βˆ₯βˆ‡um(t)βˆ₯2+2ΞΌ1β€²βˆ₯um(t)βˆ₯Lp(Ξ©)p≀βˆ₯βˆ‡um(Ο„)βˆ₯2+2ΞΌ1β€²βˆ₯um(Ο„)βˆ₯Lp(Ξ©)p+2Cbβˆ«Ο„βˆ’rΟ„βˆ₯um(s)βˆ₯2ds+2CbΞ»1βˆ’1βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds+2βˆ«Ο„tβˆ₯g(s)βˆ₯2ds$$\begin{array}{} \displaystyle \quad\int_{\tau}^{t}\left\Vert\frac{d}{d s} u^m(s) \right\Vert^2 ds +\Vert \nabla u^m(t) \Vert^2 + 2 \mu'_1 \Vert u^m(t) \Vert^p_{L^p(\Omega)} \\ \displaystyle \leq \Vert \nabla u^m(\tau) \Vert^2 + 2 \mu'_1 \Vert u^m(\tau) \Vert^p_{L^p(\Omega)} + 2C_b\int_{\tau -r}^{\tau}\Vert u^m(s) \Vert^2 ds \\ \displaystyle + 2C_b \lambda_1^{-1}\int_{\tau}^{t}\Vert \nabla u^m(s) \Vert^2 ds + 2 \int_{\tau}^{t} \Vert g(s) \Vert^2 ds \end{array}$$

From (2.1), we have βˆ«Ο„tβˆ₯βˆ‡um(s)βˆ₯2ds$\begin{array}{} \int_{\tau}^{t}\Vert \nabla u^m(s) \Vert^2 ds \end{array}$

is bounded and since g ∈ Lloc2$\begin{array}{} L^2_{loc} \end{array}$ (ℝ;L2(Ξ©)), this last estimate gives that

βˆ‚βˆ‚tumis bounded inL2((Ο„,T);L2(Ξ©)),$$\begin{array}{} \displaystyle \left\{\frac{\partial }{\partial t}u^m\right\} \; \mbox{is bounded in}\; L^2((\tau,T);L^2(\Omega)) \,, \end{array}$$

for all T > Ο„.

From the claims (1), (2) and (3), the hypothesis (IV) and the remark (1)1, we can extract a subsequence (relabelled the same) such that

um⇀uweakly* inL∞((Ο„,T);L2(Ξ©)),um⇀uweakly inL2((Ο„,T);H01(Ξ©)),um⇀uweakly inLp((Ο„,T);Lp(Ξ©)),βˆ‚umβˆ‚tβ†’βˆ‚uβˆ‚tstrongly inL2((Ο„,T);L2(Ξ©)),f(um)⇀σ′weakly inLq((Ο„,T);Lq(Ξ©)),b(.,u.m)β†’b(.,u.)strongly inL2((Ο„,T);L2(Ξ©)).$$\begin{array}{} \displaystyle u^m \rightharpoonup u \;\mbox{weakly* in}\; L^{\infty}((\tau,T);L^2(\Omega)), \\ \displaystyle u^m \rightharpoonup u \;\mbox{weakly in} \; L^{2}((\tau,T);H^{1}_0(\Omega)),\\ \displaystyle u^m \rightharpoonup u \;\mbox{weakly in} \; L^{p}((\tau,T);L^p(\Omega)),\\ \displaystyle \frac{\partial u^m}{\partial t} \rightarrow \frac{\partial u}{\partial t} \;\mbox{strongly in}\; L^{2}((\tau,T);L^2(\Omega)),\\ \displaystyle f(u^m) \rightharpoonup \sigma' \;\mbox{weakly in}\; L^{q}((\tau,T);L^q(\Omega)),\\ \displaystyle b(.,u^m_.) \rightarrow b(.,u_.) \;\mbox{strongly in}\; L^{2}((\tau,T);L^2(\Omega))\,. \end{array}$$

By the Aubin-Lions lemma of compactness, we conclude that um β†’ u strongly in L2((Ο„,T);L2(Ξ©)). Thus um β†’ u a.e [Ο„,T]Γ— Ξ©.

Since f is continuous, we deduce that f(um) β†’ f(u) a.e [Ο„,T]Γ— Ξ©. So from (2.3) and (lemma 1.3 in [7], p.12) we can identify Οƒβ€² with f(u).

To prove that u(Ο„) = u0, we put v ∈ C1((Ο„,T); H01$\begin{array}{} \displaystyle H^{1}_{0} \end{array}$ (Ξ©)) such that v(T) = 0 and we note from (1.1) that

βˆ«Ο„Tβˆ’γ€ˆu,v′〉+βˆ«Ο„Tβˆ«Ξ©βˆ‡uβˆ‡v=βˆ«Ο„T∫Ωf(u)v+βˆ«Ο„Tγ€ˆb(t,ut),v〉 +βˆ«Ο„T∫Ωgv+γ€ˆu(Ο„),v(Ο„)〉.$$\begin{array}{} \displaystyle \int^{T}_{\tau} - \langle u,v'\rangle + \int_{\tau}^{T}\int_{\Omega} \nabla u \nabla v = \int_{\tau}^{T}\int_{\Omega} f(u)v + \int_{\tau}^{T} \langle b(t,u_t), v\rangle \\ \displaystyle \qquad \qquad\qquad\qquad\qquad\qquad~+ \int_{\tau}^{T}\int_{\Omega} gv + \langle u(\tau),v(\tau)\rangle \,. \end{array}$$

In a similar way, from the Faedo-Galerkin approximations, we have

βˆ«Ο„Tβˆ’γ€ˆum,vβ€²γ€‰βˆ«Ο„Tβˆ«Ξ©βˆ‡umβˆ‡v=βˆ«Ο„T∫Ωf(um)v+βˆ«Ο„Tγ€ˆb(t,utm),v〉+βˆ«Ο„T∫Ωgv+γ€ˆum(Ο„),v(Ο„)〉.$$\begin{array}{} \displaystyle \int^{T}_{\tau} - \langle u^m,v'\rangle \int_{\tau}^{T}\int_{\Omega} \nabla u^m \nabla v = \int_{\tau}^{T}\int_{\Omega} f(u^m)v + \int_{\tau}^{T} \langle b(t,u^m_t), v\rangle \\ \displaystyle \qquad\qquad\qquad\qquad\qquad\qquad\quad + \int_{\tau}^{T}\int_{\Omega} gv + \langle u^m(\tau),v(\tau)\rangle \,. \end{array}$$

Using the fact that um(Ο„) β†’ u0 in L2(Ξ©) and (2.6) to find

βˆ«Ο„Tβˆ’γ€ˆu,v′〉+βˆ«Ο„Tβˆ«Ξ©βˆ‡uβˆ‡v=βˆ«Ο„T∫Ωf(u)v+βˆ«Ο„Tγ€ˆb(t,ut),v〉 +βˆ«Ο„T∫Ωgv+γ€ˆu0,v(Ο„)〉.$$\begin{array}{} \displaystyle \int^{T}_{\tau} - \langle u,v'\rangle + \int_{\tau}^{T}\int_{\Omega} \nabla u \nabla v = \int_{\tau}^{T}\int_{\Omega} f(u)v + \int_{\tau}^{T} \langle b(t,u_t), v\rangle \\ \displaystyle \qquad\qquad\qquad\qquad\qquad\qquad~+ \int_{\tau}^{T}\int_{\Omega} gv + \langle u^0,v(\tau)\rangle \,. \end{array}$$

Since v(Ο„) is given arbitrarily, comparing (2.7) and (2.9) we deduce that u(Ο„) = u0.

To prove that u ∈ C([Ο„,T];L2(Ξ©)), we put wm = um–u then we have

βˆ‚βˆ‚twmβˆ’Ξ”wm=f(um)βˆ’f(u)+b(t,utm)βˆ’b(t,ut).$$\begin{array}{} \displaystyle \frac{\partial}{\partial t} w^m - \Delta w^m = f(u^m)-f(u) + b(t,u^m_t) - b(t,u_t) \,. \end{array}$$

Multiplying this equation by wm and integrating over Ξ©, we obtain

ddtβˆ₯wm(t)βˆ₯2+2βˆ₯βˆ‡wm(t)βˆ₯2=2∫Ωf(um)βˆ’f(u)wm+2∫Ω(b(t,utm)βˆ’b(t,ut))(umβˆ’u).$$\begin{array}{} \displaystyle \frac{d}{dt} \Vert w^m (t) \Vert^2 + 2\Vert \nabla w^m (t) \Vert^2 = 2 \int_{\Omega}\left(f(u^m)-f(u)\right)w^m \\ \displaystyle \qquad\qquad\qquad\qquad\qquad\quad\,\,\,\,\,\,+ 2\int_{\Omega}(b(t,u_t^m)-b(t,u_t))(u^m-u) \,. \end{array}$$

By (1.3), (I) and (1.6), we get

ddtβˆ₯wm(t)βˆ₯2+2βˆ₯βˆ‡wm(t)βˆ₯2≀2kβˆ₯wm(t)βˆ₯2+2Lbβˆ₯wtmβˆ₯L2([βˆ’r,0];L2(Ξ©))2.$$\begin{array}{} \displaystyle \frac{d}{dt} \Vert w^m (t) \Vert^2 + 2\Vert \nabla w^m (t) \Vert^2 \leq 2 k \Vert w^m(t) \Vert^2 + 2 L_b \Vert w^m_t \Vert^2_{L^2([-r,0];L^2(\Omega))} \,. \end{array}$$

Integrating over [Ο„,t], we get

βˆ₯wm(t)βˆ₯2βˆ’βˆ₯wm(Ο„)βˆ₯2+2βˆ«Ο„tβˆ₯βˆ‡wm(s)βˆ₯2ds≀2kβˆ«Ο„tβˆ₯wm(s)βˆ₯2+2Lbβˆ«Ο„tβˆ«βˆ’r0βˆ₯wm(s+ΞΈ)βˆ₯2dΞΈds,≀2kβˆ«Ο„tβˆ₯wm(s)βˆ₯2+2Lbβˆ«βˆ’r0βˆ«Ο„βˆ’rtβˆ₯wm(s)βˆ₯2dsdΞΈ,≀2kβˆ«Ο„tβˆ₯wm(s)βˆ₯2+2Lbrβˆ«Ο„βˆ’rΟ„βˆ₯wm(s)βˆ₯2ds+2Lbrβˆ«Ο„tβˆ₯wm(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert w^m (t) \Vert^2 - \Vert w^m (\tau) \Vert^2 + 2\int_{\tau}^{t} \Vert \nabla w^m (s) \Vert^2 ds\\ \displaystyle \leq 2k \int_{\tau}^{t}\Vert w^m(s) \Vert^2 + 2 L_b \int_{\tau}^{t}\int_{-r}^{0}\Vert w^m(s+\theta) \Vert^2 d\,\theta ds \,,\\ \displaystyle \leq 2k \int_{\tau}^{t}\Vert w^m(s) \Vert^2 + 2 L_b \int_{-r}^{0} \int_{\tau-r}^{t}\Vert w^m(s) \Vert^2 ds d\theta \,,\\ \displaystyle \leq 2k \int_{\tau}^{t}\Vert w^m(s) \Vert^2 + 2 L_br \int_{\tau-r}^{\tau}\Vert w^m(s) \Vert^2 ds + 2 L_br \int_{\tau}^{t}\Vert w^m(s) \Vert^2 ds\,. \end{array} $$

Therefore by by this last estimate, we can deduce that

βˆ₯wm(t)βˆ₯2≀βˆ₯wm(Ο„)βˆ₯2+2Lbrβˆ«Ο„βˆ’rΟ„βˆ₯wm(s)βˆ₯2ds+(2k+2Lbr)βˆ«Ο„tβˆ₯wm(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \Vert w^m (t) \Vert^2 \leq \Vert w^m (\tau) \Vert^2 + 2 L_br \int_{\tau-r}^{\tau}\Vert w^m(s) \Vert^2 ds + (2k+2 L_br) \int_{\tau}^{t}\Vert w^m(s) \Vert^2 ds\,. \end{array}$$

Applying the Gronwall lemma to this estimate, we obtain

βˆ₯wm(t)βˆ₯2≀βˆ₯wm(Ο„)βˆ₯2+2Lbrβˆ«Ο„βˆ’rΟ„βˆ₯wm(s)βˆ₯2dse(2k+2Lbr)(tβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert w^m (t) \Vert^2 \leq \left(\Vert w^m (\tau) \Vert^2 + 2 L_br \int_{\tau-r}^{\tau}\Vert w^m(s) \Vert^2 ds\right)e^{(2k+2 L_br) (t-\tau)}\,. \end{array}$$

Since um(Ο„)β†’ u0 and um(Ο„ + ΞΈ)β†’ Ο†(ΞΈ), the estimate (2.10) shows that um β†’ u uniformly in C([Ο„,T];L2(Ξ©)).

Finally, we prove the uniqueness and continuous dependence of the solution. Let u1; u2 be two solutions of problem (1.1) with the initial conditions u0,1, u0,2 and Ο†1, Ο†2. Denoting that w = u1 – u2 and repeating the argument as in the proof of (2.10), we find

βˆ₯w(t)βˆ₯2≀βˆ₯w(Ο„)βˆ₯2+2Lbrβˆ«Ο„βˆ’rΟ„βˆ₯w(s)βˆ₯2dse(2k+2Lbr)(tβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert w (t) \Vert^2 \leq \left(\Vert w (\tau) \Vert^2 + 2 L_br \int_{\tau-r}^{\tau}\Vert w(s) \Vert^2 ds\right)e^{(2k+2 L_br) (t-\tau)}\,. \end{array}$$

and this completes the proof of the theorem. β—Ό

Existence of pullback D-attractors
Preliminaries of pullback D-attractors

First, we give some basic definitions and an abstract result on the existence of pullback attractors, which we need to obtain our results (we refer the reader to [2,3,4,8]). Let (X,d) be a complete metric space, 𝒫(X) be the class of nonempty subsets of X, and suppose π’Ÿ is a nonempty class of parameterized sets DΜ‚ = {D(t) : t ∈ ℝ}βŠ‚ 𝒫(X).

Definition 2

A two parameter family of mappings U(t,Ο„) : X β†’ X t β‰₯ Ο„, Ο„ ∈ ℝ, is called to be a process if

S(Ο„,Ο„)x = {x},βˆ€ Ο„ ∈ ℝ, x ∈ Y;

S(t,s)S(s,Ο„)x = S(t,Ο„)x, βˆ€ t β‰₯ s β‰₯ Ο„, Ο„ ∈ ℝ, x ∈ X.

Definition 3

A family of bounded sets BΜ‚ = {B(t) : t ∈ ℝ}∈ π’Ÿ is called pullback π’Ÿ-absorbing for the processS(t,Ο„)} if for any t ∈ ℝ and for any DΜ‚ ∈ π’Ÿ, there exists Ο„0(t,DΜ‚) ≀ t such that

S(t,Ο„)D(Ο„)βŠ‚B(t)forallτ≀τ0(t,D^).$$\begin{array}{} \displaystyle S(t,\tau)D(\tau) \subset B(t)\quad \it{for\, all }\; \tau \leq \tau_0(t,\widehat{D}) \,. \end{array}$$

Definition 4

The process S(t,Ο„) is said to be pullback π’Ÿ-asymptotically compact if for all t ∈ ℝ, all DΜ‚ ∈ π’Ÿ, any sequence Ο„ n β†’ -∞, and any sequence xn ∈ D(Ο„n), the sequence {S(t,Ο„n)xn} is relatively compact in X.

Definition 5

A family Γ‚ = {A(t) : t ∈ ℝ}βŠ‚ 𝒫(X) is said to be a pullback 7 π’Ÿ-attractor forS(t,Ο„)} if

A(t) is compact for all t ∈ ℝ;

Γ‚ is invariant; i.e., S(t,Ο„)A(Ο„) = A(t), for all t β‰₯ Ο„;

Γ‚ is pullback π’Ÿ-attracting; i.e.,

limΟ„β†’βˆ’βˆždist(S(t,Ο„)D(Ο„),A(t))=0,$$\begin{array}{} \displaystyle \lim_{\tau \to -\infty} dist(S(t,\tau)D(\tau), A(t))=0\,, \end{array}$$

for all DΜ‚ ∈ π’Ÿ and all t ∈ ℝ;

If {C(t) : t ∈ ℝ} is another family of closed attracting sets then A(t) βŠ‚ C(t), for all t ∈ ℝ.

Theorem 2

Let us suppose that the process {S(t,Ο„)} is pullback π’Ÿ-asymptotically compact, and BΜ‚ = {B(t) : t ∈ ℝ}∈ π’Ÿ is a family of pullback π’Ÿ-absorbing sets for {S(t,Ο„)}. Then there exists a pullback π’Ÿ-attractor {A(t) : t ∈ ℝ} such that

A(t)=β‹‚s≀t⋃τ≀sS(t,Ο„)B(Ο„)Β―.$$\begin{array}{} \displaystyle A(t) = \bigcap_{s\leq t}\overline{\bigcup_{\tau \leq s}S(t,\tau) B(\tau)}\,. \end{array}$$

Construction of the associated process

Now, we will apply the above results in the phase space H: = L2(Ξ©) Γ— L2([–r,0]; L2(Ξ©)), which is a Hilbert space with the norm

βˆ₯(u0,Ο†)βˆ₯H2=βˆ₯βˆ‡u0βˆ₯2+βˆ«βˆ’r0βˆ₯Ο†(ΞΈ)βˆ₯2dΞΈ,$$\begin{array}{} \displaystyle \Vert (u^0,\varphi) \Vert^2_H = \Vert \nabla u^0 \Vert^2 + \int_{-r}^{0}\Vert \varphi (\theta) \Vert^2 d\theta \,, \end{array}$$

with (u0,Ο†)∈ H. To this aim, We consider g ∈ Lloc2$\begin{array}{} L^{2}_{loc} \end{array}$ (ℝ;L2(Ξ©)), b: ℝ Γ— L2([–r,0];L2(Ξ©)) β†’ L2(Ξ©) with the hypotheses (I)-(IV) and f ∈ C1(ℝ;ℝ) verifying (1.2)-(1.5). Then the family of mappings

S(t,Ο„):Hβ†’H  (u0,Ο†)⟼S(t,Ο„)(u0,Ο†)=(u(t),ut),$$\begin{array}{} \displaystyle S(t,\tau) : H\rightarrow H \\ \displaystyle \qquad\quad~~(u^0,\varphi) \longmapsto S(t,\tau)(u^0,\varphi) = (u(t),u_t) \,, \end{array} $$

with t β‰₯ Ο„, Ο„ ∈ ℝ and u is the weak solution to (1.1), defines a process.

On the other hand, we construct the family of mappings

U(t,Ο„):Hβ†’C([βˆ’r,0];L2(Ξ©))(u0,Ο†)⟼U(t,Ο„)(u0,Ο†)=ut,βˆ€tβ‰₯Ο„+r,$$\begin{array}{} \displaystyle U(t,\tau) : H\rightarrow C([-r,0];L^2(\Omega)) \\ \displaystyle \qquad\qquad (u^0,\varphi) \longmapsto U(t,\tau)(u^0,\varphi) = u_t \,,\; \forall t \geq \tau + r\,, \end{array}$$

which we will use in our analysis. Of course, it is sensible to expect that the both operators should be related. Let us consider the linear mapping

j:C([βˆ’r,0];L2(Ξ©))β†’l2(Ξ©)Γ—C([βˆ’r,0];L2(Ξ©))β€‰β€‰β€‰β€‰β€‰Ο†βŸΌj(Ο†)=(Ο†(0),Ο†).$$\begin{array}{} \displaystyle j : C([-r,0]; L^2(\Omega))\rightarrow l^2(\Omega) \times C([-r,0]; L^2(\Omega)) \\ \displaystyle ~~~~~\varphi \longmapsto j(\varphi) = (\varphi(0),\varphi) \,. \end{array}$$

This map is obviously continuous from C([–r,0]; L2(Ξ©)) into H. We note that for all (u0,Ο†) ∈ H provided that t β‰₯ Ο„ + r, so we write

S(t,Ο„)(u0,Ο†)=j(U(t,Ο„)(u0,Ο†)),βˆ€(u0,Ο†)∈H,βˆ€tβ‰₯Ο„+r.$$\begin{array}{} \displaystyle S(t,\tau)(u^0,\varphi) = j(U(t,\tau)(u^0,\varphi))\,,\; \forall (u^0,\varphi) \in H\,,\; \forall t \geq \tau + r\,. \end{array}$$

To check the continuity of the process, we need the following lemma.

Lemma 1

Let (u0,Ο†), (v0,Ο•)∈ H be two couples of initial conditions for the problem(1.1)and u, v be the corresponding solutions to(1.1). Then there exists a positive constant Ξ½: = 2(12+k+Cb2βˆ’Ξ»1)>0,$\begin{array}{} 2(\frac{1}{2}+k+\frac{C_b}{2}-\lambda_1)>0\,, \end{array}$such that

βˆ₯u(t)βˆ’v(t)βˆ₯2≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯2eΞ½(tβˆ’Ο„),βˆ€tβ‰₯Ο„.$$\begin{array}{} \displaystyle \Vert u(t)-v(t) \Vert^2 \leq \left(\Vert u^0-v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert^2\right) e^{\nu (t-\tau)}\,,\; \forall t\geq \tau\,. \end{array}$$

It also holds

βˆ₯utβˆ’vtβˆ₯C([βˆ’r,0];L2(Ξ©))2≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯2eΞ½(tβˆ’rβˆ’Ο„),βˆ€tβ‰₯Ο„+r.$$\begin{array}{} \displaystyle \Vert u_t-v_t \Vert_{C([-r,0];L^2(\Omega))}^2 \leq \left(\Vert u^0-v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert^2\right) e^{\nu (t-r-\tau)}\,,\; \forall t\geq \tau + r\,. \end{array}$$

Proof

From (1.1), one has

βˆ‚βˆ‚t(uβˆ’v)βˆ’Ξ”(uβˆ’v)=f(u)βˆ’f(v)+b(t,ut)βˆ’b(t,vt).$$\begin{array}{} \displaystyle \frac{\partial}{\partial t} (u-v) - \Delta (u-v) = f(u) -f(v) + b(t,u_t) - b(t,v_t)\,. \end{array}$$

We put w = u–v, we obtain

βˆ‚wβˆ‚tβˆ’Ξ”w=f(u)βˆ’f(v)+b(t,ut)βˆ’b(t,vt).$$\begin{array}{} \displaystyle \frac{\partial w}{\partial t} - \Delta w = f(u) -f(v) + b(t,u_t) - b(t,v_t)\,. \end{array}$$

Multiplying this equation by w and integrating it over Ξ©, one gets

12ddtβˆ₯w(t)βˆ₯2+βˆ₯βˆ‡w(t)βˆ₯2=∫Ωf(u)βˆ’f(v)w+∫Ωb(t,ut)βˆ’b(t,vt)w.$$\begin{array}{} \displaystyle \frac{1}{2} \frac{d}{dt} \Vert w(t) \Vert^2 + \Vert \nabla w(t) \Vert^2 = \int_{\Omega} \left( f(u)-f(v)\right)w + \int_{\Omega} \left( b(t,u_t) - b(t,v_t)\right)w\,. \end{array}$$

Using (1.3) and Cauchy-Schwarz inequality, one has

12ddtβˆ₯w(t)βˆ₯2+βˆ₯βˆ‡w(t)βˆ₯2≀kβˆ₯w(t)βˆ₯2+βˆ₯b(t,ut)βˆ’b(t,vt)βˆ₯βˆ₯w(t)βˆ₯.$$\begin{array}{} \displaystyle \frac{1}{2} \frac{d}{dt} \Vert w(t) \Vert^2 + \Vert \nabla w(t) \Vert^2 \leq k\Vert w(t) \Vert^2 + \Vert b(t,u_t) - b(t,v_t) \Vert \Vert w(t) \Vert\,. \end{array}$$

Since Ξ»1 β€– w(t) β€–2 ≀ β€– βˆ‡ w(t) β€–2 and by the Young inequality, one finds

ddtβˆ₯w(t)βˆ₯2+2Ξ»1βˆ₯w(t)βˆ₯2≀ddtβˆ₯w(t)βˆ₯2+2βˆ₯βˆ‡w(t)βˆ₯2,≀2kβˆ₯w(t)βˆ₯2+βˆ₯b(t,ut)βˆ’b(t,vt)βˆ₯2+βˆ₯w(t)βˆ₯2.$$\begin{array}{} \displaystyle \frac{d}{dt} \Vert w(t) \Vert^2 + 2 \lambda_1\Vert w(t) \Vert^2 \leq \frac{d}{dt} \Vert w(t) \Vert^2 + 2 \Vert \nabla w(t) \Vert^2\,,\\ \displaystyle \qquad\qquad\qquad\qquad\qquad\quad\leq 2k\Vert w(t) \Vert^2 + \Vert b(t,u_t) - b(t,v_t) \Vert^2 + \Vert w(t) \Vert^2 \,. \end{array}$$

Therefore, one has

ddtβˆ₯w(t)βˆ₯2≀212+kβˆ’Ξ»1βˆ₯w(t)βˆ₯2+βˆ₯b(t,ut)βˆ’b(t,vt)βˆ₯2.$$\begin{array}{} \displaystyle \frac{d}{dt} \Vert w(t) \Vert^2 \leq 2\left(\frac{1}{2}+k -\lambda_1\right) \Vert w(t) \Vert^2 + \Vert b(t,u_t) - b(t,v_t) \Vert^2\,. \end{array}$$

Integrating this last estimate from Ο„ to t and using (1.7), one obtains

βˆ₯w(t)βˆ₯2≀βˆ₯w(Ο„)βˆ₯2+212+kβˆ’Ξ»1βˆ«Ο„tβˆ₯w(s)βˆ₯2ds +βˆ«Ο„tβˆ₯b(s,us)βˆ’b(s,vs)βˆ₯2ds, ≀βˆ₯w(Ο„)βˆ₯2+212+kβˆ’Ξ»1βˆ«Ο„tβˆ₯w(s)βˆ₯2ds+Cbβˆ«Ο„βˆ’rtβˆ₯w(s)βˆ₯2ds, ≀βˆ₯w(Ο„)βˆ₯2+212+kβˆ’Ξ»1βˆ«Ο„tβˆ₯w(s)βˆ₯2ds+Cbβˆ«Ο„βˆ’rΟ„βˆ₯w(s)βˆ₯2ds +Cbβˆ«Ο„tβˆ₯w(s)βˆ₯2ds, ≀βˆ₯w(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯w(s)βˆ₯2ds+212+k+Cb2βˆ’Ξ»1βˆ«Ο„tβˆ₯w(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \Vert w(t) \Vert^2 \leq \Vert w(\tau) \Vert^2 + 2 \left(\frac{1}{2}+k -\lambda_1\right) \int_{\tau}^{t} \Vert w(s) \Vert^2 ds \\ \displaystyle \qquad\quad~+ \int_{\tau}^{t} \Vert b(s,u_s) - b(s,v_s) \Vert^2 ds\,,\\ \displaystyle \qquad\quad~\leq \Vert w(\tau) \Vert^2 + 2 \left(\frac{1}{2}+k -\lambda_1\right) \int_{\tau}^{t} \Vert w(s) \Vert^2 ds + C_b\int_{\tau -r}^{t} \Vert w(s) \Vert^2 ds\,,\\ \displaystyle \qquad\quad~\leq \Vert w(\tau) \Vert^2 + 2 \left(\frac{1}{2}+k -\lambda_1\right) \int_{\tau}^{t} \Vert w(s) \Vert^2 ds + C_b\int_{\tau -r}^{\tau} \Vert w(s) \Vert^2 ds \\ \displaystyle \qquad\quad~+ C_b \int_{\tau }^{t} \Vert w(s) \Vert^2 ds\,,\\ \displaystyle \qquad\quad~\leq \Vert w(\tau) \Vert^2 + C_b\int_{\tau -r}^{\tau} \Vert w(s) \Vert^2 ds + 2 \left(\frac{1}{2}+k + \frac{C_b}{2}-\lambda_1\right) \int_{\tau}^{t} \Vert w(s) \Vert^2 ds\,. \end{array}$$

By the Gronwall lemma, for all t β‰₯ Ο„, one deduces

βˆ₯w(t)βˆ₯2≀βˆ₯w(Ο„)βˆ₯2+Cbβˆ«Ο„βˆ’rΟ„βˆ₯w(s)βˆ₯2dseΞ½(tβˆ’Ο„), ≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯L2([βˆ’r,0];L2(Ξ©))2eΞ½(tβˆ’Ο„),$$\begin{array}{} \displaystyle \Vert w(t) \Vert^2 \leq \left(\Vert w(\tau) \Vert^2 + C_b \int_{\tau -r}^{\tau} \Vert w(s) \Vert^2 ds\right) e^{\nu (t-\tau)}\,,\\ \displaystyle \qquad\quad~ \leq \left(\Vert u^0 -v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert_{L^2([-r,0];L^2(\Omega))}^2 \right) e^{\nu (t-\tau)}\,, \end{array}$$

and by this last estimate, we proved (3.3). Now, assume that t β‰₯ Ο„ + r, so t + ΞΈ β‰₯ Ο„ for all ΞΈ ∈ [–r,0] and one has

βˆ₯w(t+ΞΈ)βˆ₯2≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯L2([βˆ’r,0];L2(Ξ©))2eΞ½(t+ΞΈβˆ’Ο„),    ≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯L2([βˆ’r,0];L2(Ξ©))2eΞ½(tβˆ’rβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert w(t+\theta) \Vert^2 \leq \left(\Vert u^0 -v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert_{L^2([-r,0];L^2(\Omega))}^2 \right) e^{\nu (t+\theta-\tau)}\,,\\ \displaystyle \qquad\qquad~~~~\leq \left(\Vert u^0 -v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert_{L^2([-r,0];L^2(\Omega))}^2 \right) e^{\nu (t-r-\tau)}\,. \end{array}$$

Hence, we conclude

βˆ₯wtβˆ₯C([βˆ’r,0];L2(Ξ©))≀βˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯L2([βˆ’r,0];L2(Ξ©))2eΞ½(tβˆ’rβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert w_t \Vert_{C([-r,0];L^2(\Omega))} \leq \left(\Vert u^0 -v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert_{L^2([-r,0];L^2(\Omega))}^2 \right) e^{\nu (t-r-\tau)}\,. \end{array}$$

By this last estimate we finished the proof of this lemma. β—Ό

Theorem 3

Under the previous assumptions, the mapping S(.,.) defined in(3.1), is a continuous process for all Ο„ ≀ t.

Proof

The proof of this theorem is as the proof of Theorem 9 in [1]. The uniqueness of the solutions implies that S(.,.) is a process. For the continuity of S(.,.), we use the previous lemma. We consider (u0,Ο†), (v0,Ο•)∈ H and u, v are their corresponding solutions. Firstly, if we take t β‰₯ Ο„ + r, it follows from (3.4)

βˆ₯utβˆ’vtβˆ₯L2([βˆ’r,0];L2(Ξ©))2=βˆ«βˆ’r0βˆ₯u(t+ΞΈ)βˆ’v(t+ΞΈ)βˆ₯2dΞΈ,β€‰β‰€βˆ«βˆ’r0sups∈[βˆ’r,0]βˆ₯u(t+s)βˆ’v(t+s)βˆ₯2dΞΈ, ≀rβˆ₯u0βˆ’v0βˆ₯2+Cbβˆ₯Ο†βˆ’Ο•βˆ₯2eΞ½(tβˆ’rβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert u_t -v_t \Vert^2_{L^2([-r,0];L^2(\Omega))} = \int_{-r}^{0} \Vert u(t+\theta) - v(t+\theta) \Vert^2 d\theta\,,\\ \displaystyle \qquad\qquad\qquad\qquad\quad~\leq \int_{-r}^{0} \sup_{s\in [-r,0]}\Vert u(t+s) - v(t+s) \Vert^2 d\theta\,,\\ \displaystyle \qquad\qquad\qquad\qquad\quad~\leq r \left(\Vert u^0-v^0 \Vert^2 + C_b \Vert \varphi - \phi \Vert^2\right) e^{\nu (t-r-\tau)}\,. \end{array}$$

Now, for t ∈[Ο„,Ο„ + r], we deduce

βˆ₯utβˆ’vtβˆ₯L2([βˆ’r,0];L2(Ξ©))2=βˆ«βˆ’r0βˆ₯u(t+ΞΈ)βˆ’v(t+ΞΈ)βˆ₯2dΞΈ, ≀rβˆ₯u0βˆ’v0βˆ₯2+(Cbr+1)βˆ₯Ο†βˆ’Ο•βˆ₯2eΞ½(tβˆ’rβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert u_t -v_t \Vert^2_{L^2([-r,0];L^2(\Omega))} = \int_{-r}^{0} \Vert u(t+\theta) - v(t+\theta) \Vert^2 d\theta\,,\\ \displaystyle \qquad\qquad\qquad\qquad\quad~\leq \left(r\Vert u^0-v^0 \Vert^2 + (C_br+1) \Vert \varphi - \phi \Vert^2\right) e^{\nu (t-r-\tau)}\,. \end{array}$$

So, for all t β‰₯ Ο„, we have

βˆ₯utβˆ’vtβˆ₯L2([βˆ’r,0];L2(Ξ©))2≀rβˆ₯u0βˆ’v0βˆ₯2+(Cbr+1)βˆ₯Ο†βˆ’Ο•βˆ₯2eΞ½(tβˆ’rβˆ’Ο„).$$\begin{array}{} \displaystyle \Vert u_t -v_t \Vert^2_{L^2([-r,0];L^2(\Omega))} \leq \left(r\Vert u^0-v^0 \Vert^2 + (C_br+1) \Vert \varphi - \phi \Vert^2\right) e^{\nu (t-r-\tau)}\,. \end{array}$$

Hence, by this last estimate and (3.3) we deduce the continuity of S(t,Ο„).β—Ό

Existence of pullback D-absorbing set in C([–r,0]; L2(Ξ©)) and H

Firstly, we need to the following lemma, it relates the absorption properties for the mappings with those of process S in the fact that, proving those for U yields to similar properties for S.

Lemma 2

Assume that the family of bounded sets {B(t): t ∈ ℝ} in the space C([–r,0]; L2(Ξ©)) is pullback π’Ÿ-absorbing for the mapping U(.,.). Then the family of bounded sets {j(B(t)): t ∈ ℝ} in L2(Ξ©) Γ— C([–r,0]; L2(Ξ©)) is pullback π’Ÿ-absorbing for the process S(.,.).

Proof

Let {D(t): t ∈ ℝ} be a family bounded sets in H, so there exists T > r such that

U(t,Ο„)D(Ο„)βŠ‚B(t),βˆ€tβˆ’Ο„β‰₯T.$$\begin{array}{} \displaystyle U(t,\tau)D(\tau) \subset B(t)\,,\; \forall t-\tau \geq T\,. \end{array}$$

On the other hand, we have

S(t,Ο„)(u0,Ο†)=j(U(t,Ο„)(u0,Ο†)),$$\begin{array}{} \displaystyle S(t,\tau)(u^0,\varphi) = j(U(t,\tau)(u^0,\varphi))\,, \end{array}$$

it follows that

S(t,Ο„)(u0,Ο†)=j(U(t,Ο„)(u0,Ο†))βŠ‚j(B(t)),βˆ€tβˆ’Ο„β‰₯T.$$\begin{array}{} \displaystyle S(t,\tau)(u^0,\varphi) = j(U(t,\tau)(u^0,\varphi)) \subset j(B(t))\,,\; \forall t-\tau \geq T\,. \end{array}$$

β—Ό

Remark 2

Noticing that the word absorbing used in this papier should be interpreted in a generalized sense, since U is not a process.

Now, we need the following estimations.

Lemma 3

Assume thatg∈Lloc2(R;L2(Ξ©)),$\begin{array}{} \displaystyle g\in L^2_{loc}(\mathbb{R};L^2(\Omega))\,, \end{array}$there exists a small enough Ξ± < 2Ξ»1 – 2–Cbsuch that

βˆ«βˆ’βˆžteΞ±tβˆ₯g(s)βˆ₯2ds<∞,$$\begin{array}{} \displaystyle \int_{-\infty}^{t} e^{\alpha t} \Vert g(s) \Vert^2 ds \lt \infty \,, \end{array}$$

the functionfsatisfies(1.2)-(1.5)andbfulfills conditions (I)-(IV) and

βˆ«Ο„teΟƒsβˆ₯b(s,us)βˆ’b(s,vs)βˆ₯2ds≀Cbβˆ«Ο„βˆ’rteΟƒsβˆ₯u(s)βˆ’v(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \int_{\tau}^{t} e^{\sigma s} \Vert b(s,u_s) - b(s,v_s) \Vert^2 ds \leq C_b \int_{\tau -r}^{t} e^{\sigma s} \Vert u(s)-v(s) \Vert^2 ds\,. \end{array}$$

Then we have

βˆ₯u(t)βˆ₯2≀eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \Vert u(t) \Vert^2 \leq e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds \nonumber\\ \displaystyle \qquad\quad\,\,+\,2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t-\tau)}\right) + e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

and

Ξ·eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2ds+2ΞΌ1eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds≀eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \quad\eta e^{-\alpha t}\int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds + 2\mu_1e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds \nonumber\\ \displaystyle \leq e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds + 2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t-\tau)}\right) \nonumber\\ \displaystyle +\, e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

where Ξ· : = 2Ξ»1 – 2 – Ξ± – Cb.

Proof

Multiplying (1.1) by u and integrating over Ξ©, one has

12ddtβˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2=∫Ωf(u)u+∫Ωb(t,ut)u+∫Ωgu.$$\begin{array}{} \displaystyle \frac{1}{2} \frac{d}{dt} \Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 = \int_{\Omega} f(u) u + \int_{\Omega} b(t,u_t) u + \int_{\Omega} g u\,. \end{array}$$

By (1.2), Cauchy-Shwarz and Young inequalities, we obtain

12ddtβˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2+ΞΌ1βˆ₯u(t)βˆ₯Lp(Ξ©)p≀c|Ξ©|+12βˆ₯b(t,ut)βˆ₯2+12βˆ₯g(t)βˆ₯2+βˆ₯u(t)βˆ₯2.$$\begin{array}{} \displaystyle \frac{1}{2} \frac{d}{dt} \Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 + \mu_1 \Vert u(t) \Vert^p_{L^p(\Omega)} \leq c\vert \Omega \vert + \frac{1}{2} \Vert b(t,u_t)\Vert^2 + \frac{1}{2}\Vert g(t) \Vert^2 + \Vert u(t) \Vert^2\,. \end{array}$$

Since Ξ»1βˆ₯uβˆ₯2 ≀ βˆ₯βˆ‡uβˆ₯2 and after calculation, one has

ddtβˆ₯u(t)βˆ₯2+2(Ξ»1βˆ’1)βˆ₯u(t)βˆ₯2+2ΞΌ1βˆ₯u(t)βˆ₯Lp(Ξ©)p≀2c|Ξ©|+βˆ₯b(t,ut)βˆ₯2+βˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \frac{d}{dt} \Vert u(t) \Vert^2 + 2(\lambda_1 - 1)\Vert u(t) \Vert^2 + 2\mu_1 \Vert u(t) \Vert^p_{L^p(\Omega)} \leq 2 c\vert \Omega \vert + \Vert b(t,u_t)\Vert^2 + \Vert g(t) \Vert^2 \,. \end{array}$$

Now, we multiply this last estimate by eΞ±t such that 0 < Ξ± < 2Ξ»1 –2 – Cb, so one gets

eΞ±tddtβˆ₯u(t)βˆ₯2+2(Ξ»1βˆ’1)eΞ±tβˆ₯u(t)βˆ₯2+2ΞΌ1eΞ±tβˆ₯u(t)βˆ₯Lp(Ξ©)p≀2c|Ξ©|eΞ±t+eΞ±tβˆ₯b(t,ut)βˆ₯2+eΞ±tβˆ₯g(t)βˆ₯2.$$\begin{array}{} \quad \displaystyle e^{\alpha t} \frac{d}{dt} \Vert u(t) \Vert^2 + 2(\lambda_1 - 1)e^{\alpha t}\Vert u(t) \Vert^2 + 2\mu_1 e^{\alpha t}\Vert u(t) \Vert^p_{L^p(\Omega)} \\ \leq 2 c\vert \Omega \vert e^{\alpha t} + e^{\alpha t} \Vert b(t,u_t)\Vert^2 + e^{\alpha t} \Vert g(t) \Vert^2 \,. \end{array}$$

On the other hand, we have

ddteΞ±tβˆ₯u(t)βˆ₯2=Ξ±eΞ±tβˆ₯u(t)βˆ₯2+eΞ±tddtβˆ₯u(t)βˆ₯2$$\begin{array}{} \displaystyle \frac{d}{dt}\left(e^{\alpha t}\Vert u(t) \Vert^2\right) = \alpha e^{\alpha t} \Vert u(t) \Vert^2 + e^{\alpha t} \frac{d}{dt} \Vert u(t) \Vert^2 \end{array}$$

We substitute (3.9) in this equality, we find

ddteΞ±tβˆ₯u(t)βˆ₯2≀αeΞ±tβˆ₯u(t)βˆ₯2βˆ’2(Ξ»1βˆ’1)eΞ±tβˆ₯u(t)βˆ₯2βˆ’2ΞΌ1eΞ±tβˆ₯u(t)βˆ₯Lp(Ξ©)p+2c|Ξ©|eΞ±t+eΞ±tβˆ₯b(t,ut)βˆ₯2+eΞ±tβˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \frac{d}{dt}\left(e^{\alpha t}\Vert u(t) \Vert^2\right) \leq \alpha e^{\alpha t} \Vert u(t) \Vert^2 -2 (\lambda_1 - 1)e^{\alpha t}\Vert u(t) \Vert^2 - 2\mu_1 e^{\alpha t}\Vert u(t) \Vert^p_{L^p(\Omega)} \\ \displaystyle \qquad\qquad\qquad\quad\,+ 2 c\vert \Omega \vert e^{\alpha t} + e^{\alpha t} \Vert b(t,u_t)\Vert^2 + e^{\alpha t} \Vert g(t) \Vert^2 \,. \end{array}$$

Integrating this last estimate over [Ο„, t], one obtains

eΞ±tβˆ₯u(t)βˆ₯2≀eΞ±Ο„βˆ₯u(Ο„)βˆ₯2+2c|Ξ©|Ξ±βˆ’1(eΞ±tβˆ’eΞ±Ο„)+(Ξ±+2βˆ’2Ξ»1)βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2dsβˆ’2ΞΌ1βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds+βˆ«Ο„teΞ±sβˆ₯b(s,us)βˆ₯2ds+βˆ«Ο„teΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle e^{\alpha t}\Vert u(t) \Vert^2 \leq e^{\alpha \tau}\Vert u(\tau) \Vert^2 + 2 c\vert \Omega \vert \alpha^{-1} (e^{\alpha t}- e^{\alpha \tau}) \\ \displaystyle \qquad\qquad\,\,\,\,+\, (\alpha +2-2 \lambda_1) \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds - 2\mu_1 \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds\\ \displaystyle \qquad\qquad\,\,\,\,+ \int_{\tau}^{t} e^{\alpha s} \Vert b(s,u_s)\Vert^2 ds + \int_{\tau}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

Using (3.6) and (II), one has

eΞ±tβˆ₯u(t)βˆ₯2≀eΞ±Ο„βˆ₯u(Ο„)βˆ₯2+2c|Ξ©|Ξ±βˆ’1(eΞ±tβˆ’eΞ±Ο„)+(Ξ±+2βˆ’2Ξ»1)βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2dsβˆ’2ΞΌ1βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds+Cbβˆ«Ο„βˆ’rteΞ±sβˆ₯u(s)βˆ₯2ds+βˆ«Ο„teΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle e^{\alpha t}\Vert u(t) \Vert^2 \leq e^{\alpha \tau}\Vert u(\tau) \Vert^2 + 2 c\vert \Omega \vert \alpha^{-1} (e^{\alpha t}- e^{\alpha \tau}) \nonumber\\ \displaystyle \qquad\qquad\,\,\,\,+\, (\alpha +2-2 \lambda_1) \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds - 2\mu_1 \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds \nonumber\\ \displaystyle \qquad\qquad\,\,\,\,+ \,C_b\int_{\tau-r}^{t} e^{\alpha s} \Vert u(s)\Vert^2 ds + \int_{\tau}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

On the other hand, we have

βˆ«Ο„βˆ’rteΞ±sβˆ₯u(s)βˆ₯2ds=βˆ«Ο„βˆ’rΟ„eΞ±sβˆ₯u(s)βˆ₯2ds+βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2ds,≀eΞ±Ο„βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \int_{\tau-r}^{t} e^{\alpha s} \Vert u(s)\Vert^2 ds = \int_{\tau-r}^{\tau} e^{\alpha s} \Vert u(s)\Vert^2 ds + \int_{\tau}^{t} e^{\alpha s} \Vert u(s)\Vert^2 ds \,,\nonumber\\ \displaystyle \qquad\qquad\qquad\qquad\leq e^{\alpha \tau}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds + \int_{\tau}^{t} e^{\alpha s} \Vert u(s)\Vert^2 ds \,. \end{array}$$

So by (3.10) and (3.11), one finds

eΞ±tβˆ₯u(t)βˆ₯2≀eΞ±Ο„βˆ₯u(Ο„)βˆ₯2+2c|Ξ©|Ξ±βˆ’1(eΞ±tβˆ’eΞ±Ο„)+(Ξ±+2βˆ’2Ξ»1+Cb)βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2dsβˆ’2ΞΌ1βˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds+CbeΞ±Ο„βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+βˆ«Ο„teΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle e^{\alpha t}\Vert u(t) \Vert^2 \leq e^{\alpha \tau}\Vert u(\tau) \Vert^2 + 2 c\vert \Omega \vert \alpha^{-1} (e^{\alpha t}- e^{\alpha \tau}) \\ \displaystyle \qquad\qquad\,\,\,\,+\, (\alpha +2-2 \lambda_1 + C_b) \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds - 2\mu_1 \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds \\ \displaystyle \qquad\qquad\,\,\,\,+\, C_be^{\alpha \tau}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds + \int_{\tau}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

Hence, by (3.5) we obtain

βˆ₯u(t)βˆ₯2+(2Ξ»1βˆ’Ξ±βˆ’2βˆ’Cb)eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2ds+2ΞΌ1eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds≀eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+Cbeβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \,\,\,\,\Vert u(t) \Vert^2 + (2 \lambda_1 - \alpha - 2 - C_b) e^{-\alpha t}\int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds \\ \displaystyle + 2\mu_1e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds \\ \displaystyle \leq e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + 2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t-\tau)}\right) + C_b e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds \\ \displaystyle + e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

Thus, for Ξ· : = 2 Ξ»1– Ξ± – 2 – Cb > 0, by this last estimate we get

βˆ₯u(t)βˆ₯2≀eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \Vert u(t) \Vert^2 \leq e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds \\ \displaystyle \qquad\quad\,\,+ 2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t-\tau)}\right) + e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

and

Ξ·eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯2ds+2ΞΌ1eβˆ’Ξ±tβˆ«Ο„teΞ±sβˆ₯u(s)βˆ₯Lp(Ξ©)pds≀eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \quad\eta e^{-\alpha t}\int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^2 ds + 2\mu_1e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\Vert u(s) \Vert^p_{L^p(\Omega)} ds \\ \displaystyle \leq e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds + 2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t-\tau)}\right) \\ \displaystyle+ e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

for all t β‰₯ Ο„. So by these two estimations the proof of the lemma is finished. β—Ό

Proposition 1

Under the assumptions inlemma (3). Then the family {B1(t) : t ∈ ℝ} given by

B1(t)=BΒ―C([βˆ’r,0];L2(Ξ©))(0,R1(t)),$$\begin{array}{} \displaystyle B_1(t) = \overline{B}_{C([-r,0]; L^2(\Omega))}(0, R_1(t))\,, \end{array}$$

with

R12(t)=eΞ±r2c|Ξ©|Ξ±βˆ’1+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±tβˆ₯g(s)βˆ₯2ds,βˆ€t∈R;$$\begin{array}{} \displaystyle R_1^2(t)= e^{\alpha r} \left(2 c \vert \Omega \vert \alpha^{-1} + e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha t} \Vert g(s) \Vert^2 ds \right) \,,\; \forall t \in \mathbb{R}\,; \end{array}$$

is pullback 𝓓-absorbing for the mappingU(t, Ο„). Moreover, the family {B0(t) : t ∈ ℝ} given by

B0(t)=BΒ―L2(Ξ©))(0,R1(t))Γ—BΒ―L2([βˆ’r,0];L2(Ξ©))0,rR1(t)βŠ‚H,βˆ€t∈R,$$\begin{array}{} \displaystyle B_0(t) = \overline{B}_{L^2(\Omega))}(0, R_1(t)) \times \overline{B}_{L^2([-r,0]; L^2(\Omega))}\left(0, \sqrt{r}R_1(t)\right) \subset H\,,\; \forall t\in \mathbb{R}\,, \end{array}$$

is pullback 𝓓-absorbing for the process S defined by(3.1).

Proof

The first part may be proved as follows.

By definition, we have

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];L2(Ξ©))2=sups∈[βˆ’r,0]βˆ₯u(t+s)βˆ₯2.$$\begin{array}{} \displaystyle \Vert U(t,\tau)(u^0,\varphi) \Vert_{C([-r,0];L^2(\Omega))}^2 = \sup_{s\in[-r,0]} \Vert u(t+s) \Vert^2 \,. \end{array}$$

From (3.7), if we take t β‰₯ Ο„ + r, so t + ΞΈ β‰₯ Ο„. Then one has

βˆ₯u(t+ΞΈ)βˆ₯2≀eβˆ’Ξ±(t+ΞΈβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(t+ΞΈβˆ’Ο„)βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ’11βˆ’eβˆ’Ξ±(t+ΞΈβˆ’Ο„)+eβˆ’Ξ±(t+ΞΈ)βˆ«βˆ’βˆžt+ΞΈeΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \Vert u(t+\theta) \Vert^2 \leq e^{-\alpha(t+\theta- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t+\theta-\tau)} \Vert \varphi\Vert_{L^2([-r,0];L^2(\Omega))}^2 \\ \displaystyle \qquad\qquad\quad+ 2 c\vert \Omega \vert \alpha^{-1} \left(1- e^{-\alpha (t+\theta-\tau)}\right) + e^{-\alpha (t+\theta)}\int_{-\infty}^{t+\theta} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

which implies that

sups∈[βˆ’r,0]βˆ₯u(t+s)βˆ₯2≀eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+Cbeβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ’1eΞ±reβˆ’Ξ±rβˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \sup_{s\in [-r,0]}\Vert u(t+s) \Vert^2 \leq e^{-\alpha(t-r- \tau)}\Vert u(\tau) \Vert^2 + C_b e^{-\alpha (t-r-\tau)}\Vert \varphi\Vert_{L^2([-r,0];L^2(\Omega))}^2 \nonumber\\ \displaystyle \qquad\qquad\qquad\qquad+ \,2 c\vert \Omega \vert \alpha^{-1} e^{\alpha r}\left(e^{-\alpha r}- e^{-\alpha (t-\tau)}\right) \nonumber\\ \displaystyle \qquad\qquad\qquad\qquad+\, e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,, \end{array}$$

On the one hand, we have

βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2=βˆ«βˆ’r0βˆ₯Ο†(ΞΈ)βˆ₯2dΞΈ,β‰€βˆ«βˆ’r0sups∈[βˆ’r,0]βˆ₯Ο†(s)βˆ₯2dΞΈ,≀rβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2.$$\begin{array}{} \displaystyle \Vert \varphi\Vert_{L^2([-r,0];L^2(\Omega))}^2 = \int_{-r}^{0} \Vert \varphi(\theta)\Vert^2 d\theta \,,\nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\leq \int_{-r}^{0} \sup_{s\in [-r,0]}\Vert \varphi(s)\Vert^2 d\theta\,,\nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\leq r \Vert \varphi \Vert^2_{C([-r,0];L^2(\Omega))}\,. \end{array}$$

Therefore by (3.12), (3.13) and the fact that u(Ο„) = Ο† (0), we obtain

sups∈[βˆ’r,0]βˆ₯u(t+s)βˆ₯2≀eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†(0)βˆ₯2+Cbreβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ’1eΞ±reβˆ’Ξ±rβˆ’eβˆ’Ξ±(tβˆ’Ο„)+eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,≀(1+Cbr)eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ’1eΞ±r+eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\sup_{s\in [-r,0]}\Vert u(t+s) \Vert^2 \leq e^{-\alpha(t-r- \tau)}\Vert \varphi(0) \Vert^2 + C_b r e^{-\alpha (t-r-\tau)}\Vert \varphi\Vert_{C([-r,0];L^2(\Omega))}^2 \\ \displaystyle +\, 2 c\vert \Omega \vert \alpha^{-1} e^{\alpha r}\left(e^{-\alpha r}- e^{-\alpha (t-\tau)}\right) + e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,,\\ \displaystyle \leq (1+C_b r) e^{-\alpha (t-r-\tau)} \Vert \varphi\Vert_{C([-r,0];L^2(\Omega))}^2 + 2 c\vert \Omega \vert \alpha^{-1} e^{\alpha r} \\ \displaystyle + \,e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

Then, we find

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];L2(Ξ©))2=sups∈[βˆ’r,0]βˆ₯u(t+s)βˆ₯2,≀(1+Cbr)eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+eΞ±r2c|Ξ©|Ξ±βˆ’1+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,$$\begin{array}{} \displaystyle \quad\Vert U(t,\tau)(u^0,\varphi) \Vert_{C([-r,0];L^2(\Omega))}^2 = \sup_{s\in [-r,0]}\Vert u(t+s) \Vert^2 \,,\nonumber\\ \leq (1+C_b r) e^{-\alpha (t-r-\tau)} \Vert \varphi\Vert_{C([-r,0];L^2(\Omega))}^2 \nonumber\\ +\, e^{\alpha r} \left(2 c\vert \Omega \vert \alpha^{-1} + e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds\right) \,, \end{array}$$

for all (u0, Ο†) ∈ H and all t β‰₯ Ο„ + r.

Let 𝓑 be the set of all functions ρ : ℝ ⟢ (0, + ∞) such that

limtβ†’βˆ’βˆžeΞ±tρ2(t)=0.$$\begin{array}{} \displaystyle \lim_{t\rightarrow -\infty} e^{\alpha t} \rho^{2}(t) =0\,. \end{array}$$

By 𝓓 we denote the class of all families DΜ‚ = {D(t) : t ∈ ℝ} βŠ‚ π“Ÿ(C([–r, 0];L2(Ξ©))) such that D(t) βŠ‚ BC([–r, 0];L2(Ξ©))(0,ρ(t)), for some ρ ∈ 𝓑, where we denote by BC([–r, 0];L2(Ξ©))(0, ρ(t)) the closed ball in C([–r, 0];L2(Ξ©)) centered at 0 with radius ρ(t). Let

R12(t)=eΞ±r2c|Ξ©|Ξ±βˆ’1+eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle R_1^2(t)= e^{\alpha r} \left(2 c\vert \Omega \vert \alpha^{-1} + e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds\right)\,. \end{array}$$

Thus, for all DΜ‚ ∈ 𝓓 and all t ∈ ℝ, by (3.14) there exists Ο„0 (DΜ‚, t) ≀ t such that

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];L2(Ξ©))2≀R12(t),$$\begin{array}{} \displaystyle \Vert U(t,\tau)(u^0,\varphi) \Vert_{C([-r,0];L^2(\Omega))}^2 \leq R_1^2(t)\,, \end{array}$$

for all Ο„ ≀ Ο„0(DΜ‚, t); i.e., B1(t) = BC([–r, 0]; L2(Ξ©))(0, R1(t)) is pullback 𝓓-absorbing for the mapping U(t, Ο„).

Concerning the second part, we observe that {j(B(t)), t ∈ ℝ} is a family of pullback 𝓓-absorbing sets for the process S. On the other hand, since

βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2≀rβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2,$$\begin{array}{} \displaystyle \Vert \varphi\Vert_{L^2([-r,0];L^2(\Omega))}^2 \leq r \Vert \varphi\Vert_{C([-r,0];L^2(\Omega))}^2 \,, \end{array}$$

and

j(B(t))=(Ο†(0),Ο†):Ο†βˆˆBΒ―C([βˆ’r,0];L2(Ξ©))(0,R1(t)),$$\begin{array}{} \displaystyle j(B(t)) = \left\{(\varphi(0),\varphi)\,:\; \varphi \in \overline{B}_{C([-r,0]; L^2(\Omega))}(0, R_1(t))\right\}\,, \end{array}$$

we deduce that

j(B(t))βŠ‚BΒ―L2(Ξ©))(0,R1(t))Γ—BΒ―L2([βˆ’r,0];L2(Ξ©))0,rR1(t)=B0(t),$$\begin{array}{} \displaystyle j(B(t)) \subset \overline{B}_{L^2(\Omega))}(0, R_1(t)) \times \overline{B}_{L^2([-r,0]; L^2(\Omega))}\left(0, \sqrt{r}R_1(t)\right) = B_0(t)\,, \end{array}$$

which implies that the family {B0(t): t ∈ ℝ} is pullback 𝓓-absorbing sets for the process S. β—Ό

Existence of pullback D-absorbing set in C([βˆ’r,0];H01(Ξ©))$\begin{array}{} \displaystyle C([-r,0]; H^1_0(\Omega)) \end{array}$
Proposition 2

Suppose that conditions oflemma (3)are satisfied, if there exists a sufficiently smallΞ±βˆ—such that

Ξ±<Ξ±βˆ—<min2Ξ»1βˆ’1Ξ»1,2ΞΌ1.$$\begin{array}{} \displaystyle \alpha \lt \alpha^* \lt \min \left\{ 2 \frac{\lambda_1 -1}{\lambda_1}\,,\, 2\mu_1 \right\}\,. \end{array}$$

Then the family {B2(t) : t ∈ ℝ} given by

B2(t)=BΒ―C([βˆ’r,0];H01(Ξ©))(0,R2(t)),$$\begin{array}{} \displaystyle B_2(t) = \overline{B}_{C([-r,0]; H^1_0(\Omega))}(0, R_2(t))\,, \end{array}$$

where

R22(t)=2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—r+2CbΞ±βˆ’1Ξ·βˆ’1eΞ±r+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds+2eβˆ’Ξ±βˆ—(tβˆ’r)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds,βˆ€t∈R,$$\begin{array}{} \displaystyle R_2^2(t)= 2c \vert \Omega \vert \left({\alpha^*}^{-1} e^{\alpha^* r }+ 2C_b \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \\ \displaystyle \qquad\,\,\,\,+\, 2C_b \eta^{-1} e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds + 2 e^{-\alpha^* (t-r)} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \,,\; \forall t\in \mathbb{R}\,, \end{array}$$

is pullback 𝓓-absorbing for the mapping U(t, Ο„).

Proof

Multipying (1.1) by u+βˆ‚uβˆ‚t$\begin{array}{} \displaystyle u+\frac{\partial u}{\partial t} \end{array}$ and integrating over Ξ©, we obtain

ddtu(t)2+12ddtβˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2=∫Ωf(u)u+βˆ‚uβˆ‚t+∫Ωb(t,ut)u+βˆ‚uβˆ‚t+∫Ωgu+βˆ‚uβˆ‚t.$$\begin{array}{} \displaystyle \quad \left\Vert \frac{d}{dt} u(t) \right\Vert^2 + \frac{1}{2} \frac{d}{dt} \left(\Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2\right) \\ \displaystyle = \int_{\Omega} f(u)\left( u+\frac{\partial u}{\partial t} \right) + \int_{\Omega} b(t,u_t) \left( u+\frac{\partial u}{\partial t} \right) + \int_{\Omega} g\left( u+\frac{\partial u}{\partial t} \right)\,. \end{array}$$

Using (1.2), (1.5), (2.5) and Young inequality, one finds

2ddtu(t)2+ddtβˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1β€²βˆ₯u(t)βˆ₯Lp(Ξ©)p+2βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1βˆ₯u(t)βˆ₯Lp(Ξ©)p≀2c|Ξ©|+2βˆ₯b(t,ut)βˆ₯2+2βˆ₯g(t)βˆ₯2+2ddtu(t)2+2βˆ₯u(t)βˆ₯2.$$\begin{array}{} \displaystyle \,\,\,\,\,2\left\Vert \frac{d}{dt} u(t) \right\Vert^2 + \frac{d}{dt} \left(\Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 + 2\mu'_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \right) \\ \displaystyle + 2 \Vert \nabla u(t) \Vert^2 + 2\mu_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \\ \displaystyle \leq 2c \vert\Omega \vert + 2\Vert b(t,u_t) \Vert^2 + 2\Vert g(t) \Vert^2 + 2\left\Vert \frac{d}{dt} u(t) \right\Vert^2 + 2\Vert u(t) \Vert^2\,. \end{array}$$

By the fact that Ξ»1βˆ₯uβˆ₯2 ≀ βˆ₯βˆ‡uβˆ₯2, after simplification one has

ddtβˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1β€²βˆ₯u(t)βˆ₯Lp(Ξ©)p+2(1βˆ’Ξ»1βˆ’1)βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1βˆ₯u(t)βˆ₯Lp(Ξ©)p≀2c|Ξ©|+2βˆ₯b(t,ut)βˆ₯2+2βˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \quad\frac{d}{dt} \left(\Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 + 2\mu'_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \right) \\ \displaystyle + 2(1-\lambda_1^{-1}) \Vert \nabla u(t) \Vert^2 + 2\mu_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \\ \displaystyle \leq 2c \vert\Omega \vert + 2\Vert b(t,u_t) \Vert^2 + 2\Vert g(t) \Vert^2 \,. \end{array}$$

Since Ξ± in lemma (3) is small enough, we can choose a positive constant Ξ±βˆ— sufficiently small with Ξ± < Ξ±* < min2Ξ»1βˆ’1Ξ»1,2ΞΌ1,$\begin{array}{} \displaystyle \min \left\{ 2 \frac{\lambda_1 -1}{\lambda_1}\,,\, 2\mu_1 \right\}\,, \end{array}$ such that

2(1βˆ’Ξ»1βˆ’1)βˆ₯βˆ‡u(t)βˆ₯2β‰₯Ξ±βˆ—(βˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2).$$\begin{array}{} \displaystyle 2(1-\lambda_1^{-1}) \Vert \nabla u(t) \Vert^2 \geq \alpha^* (\Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2)\,. \end{array}$$

So, we can write

ddtΞ³1(t)+Ξ±βˆ—Ξ³1(t)≀2c|Ξ©|+2βˆ₯b(t,ut)βˆ₯2+2βˆ₯g(t)βˆ₯2,$$\begin{array}{} \displaystyle \frac{d}{dt}\gamma_1 (t) + \alpha^* \gamma_1 (t) \leq 2c \vert \Omega \vert + 2 \Vert b(t,u_t) \Vert^2 + 2 \Vert g(t) \Vert^2 \,, \end{array}$$

where

Ξ³1(t)=βˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1β€²βˆ₯u(t)βˆ₯Lp(Ξ©)p.$$\begin{array}{} \displaystyle \gamma_1 (t) = \Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 + 2\mu'_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \,. \end{array}$$

Multiplying (3.16) by eΞ±βˆ—t, one has

eΞ±βˆ—tddtΞ³1(t)+Ξ±βˆ—eΞ±βˆ—tΞ³1(t)≀2c|Ξ©|eΞ±βˆ—t+2eΞ±βˆ—tβˆ₯b(t,ut)βˆ₯2+2eΞ±βˆ—tβˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle e^{\alpha^* t} \frac{d}{dt}\gamma_1 (t) + \alpha^* e^{\alpha^* t} \gamma_1 (t) \leq 2c \vert \Omega \vert e^{\alpha^* t} + 2 e^{\alpha^* t} \Vert b(t,u_t) \Vert^2+ 2 e^{\alpha^* t}\Vert g(t) \Vert^2 \,. \end{array}$$

On the other hand, we have

ddteΞ±βˆ—tΞ³1(t)=Ξ±βˆ—eΞ±βˆ—tΞ³1(t)+eΞ±βˆ—tddtΞ³1(t)$$\begin{array}{} \displaystyle \frac{d}{dt}\left(e^{\alpha^* t} \gamma_1 (t)\right) = \alpha^* e^{\alpha^* t} \gamma_1 (t) + e^{\alpha^* t} \frac{d}{dt}\gamma_1 (t) \end{array}$$

Then, by (3.18) and (3.19), we obtain

ddteΞ±βˆ—tΞ³1(t)β‰€Ξ±βˆ—eΞ±βˆ—tΞ³1(t)βˆ’Ξ±βˆ—eΞ±βˆ—tΞ³1(t)+2c|Ξ©|eΞ±βˆ—t+2eΞ±βˆ—tβˆ₯b(t,ut)βˆ₯2+2eΞ±βˆ—tβˆ₯g(t)βˆ₯2,≀2c|Ξ©|eΞ±βˆ—t+2eΞ±βˆ—tβˆ₯b(t,ut)βˆ₯2+2eΞ±βˆ—tβˆ₯g(t)βˆ₯2.$$\begin{array}{} \displaystyle \frac{d}{dt}\left(e^{\alpha^* t} \gamma_1 (t)\right) \leq \alpha^* e^{\alpha^* t} \gamma_1 (t) - \alpha^* e^{\alpha^* t} \gamma_1 (t) + 2c \vert \Omega \vert e^{\alpha^* t} \\ \displaystyle \qquad\qquad\qquad\,\,\,+\,2 e^{\alpha^* t} \Vert b(t,u_t) \Vert^2+ 2 e^{\alpha^* t}\Vert g(t) \Vert^2 \,,\\ \displaystyle \qquad\qquad\qquad\,\,\,\leq 2c \vert \Omega \vert e^{\alpha^* t} + 2 e^{\alpha^* t} \Vert b(t,u_t) \Vert^2 + 2 e^{\alpha^* t}\Vert g(t) \Vert^2 \,. \end{array}$$

Integrating this last one from Ο„ to t, one gets

eΞ±βˆ—tΞ³1(t)≀eΞ±βˆ—Ο„Ξ³1(Ο„)+2c|Ξ©|βˆ«Ο„teΞ±βˆ—sds+2βˆ«Ο„teΞ±βˆ—sβˆ₯b(s,us)βˆ₯2ds+2βˆ«Ο„teΞ±βˆ—sβˆ₯g(s)βˆ₯2ds,+≀eΞ±βˆ—Ο„Ξ³1(Ο„)+2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—tβˆ’eΞ±βˆ—Ο„+2βˆ«Ο„teΞ±βˆ—sβˆ₯b(s,us)βˆ₯2ds++2βˆ«Ο„teΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle e^{\alpha^* t} \gamma_1 (t) \leq e^{\alpha^* \tau} \gamma_1 (\tau) + 2c \vert \Omega \vert \int_{\tau}^{t}e^{\alpha^* s} ds+ 2 \int_{\tau}^{t} e^{\alpha^* s} \Vert b(s,u_s) \Vert^2 ds\\ \displaystyle \qquad\qquad+\, 2 \int_{\tau}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,,\\ \displaystyle \qquad\qquad+\,\leq e^{\alpha^* \tau} \gamma_1 (\tau) + 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( e^{\alpha^* t} - e^{\alpha^* \tau}\right) + 2 \int_{\tau}^{t} e^{\alpha^* s} \Vert b(s,u_s) \Vert^2 ds\\ \displaystyle \qquad\qquad+\,+\, 2 \int_{\tau}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,. \end{array}$$

From (3.5) and (3.6), one finds

eΞ±βˆ—tΞ³1(t)≀eΞ±βˆ—Ο„Ξ³1(Ο„)+2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—tβˆ’eΞ±βˆ—Ο„+2Cbβˆ«Ο„βˆ’rteΞ±βˆ—sβˆ₯u(s)βˆ₯2ds+2βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds,≀eΞ±βˆ—Ο„Ξ³1(Ο„)+2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—tβˆ’eΞ±βˆ—Ο„+2CbeΞ±βˆ—Ο„βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2Cbβˆ«Ο„teΞ±βˆ—sβˆ₯u(s)βˆ₯2ds+2βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle e^{\alpha^* t} \gamma_1 (t) \leq e^{\alpha^* \tau} \gamma_1 (\tau) + 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( e^{\alpha^* t} - e^{\alpha^* \tau}\right) + 2C_b \int_{\tau-r}^{t} e^{\alpha^* s} \Vert u(s) \Vert^2 ds\\ \displaystyle \qquad\qquad+\, 2 \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,,\\ \displaystyle \qquad\qquad\leq e^{\alpha^* \tau} \gamma_1 (\tau) + 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( e^{\alpha^* t} - e^{\alpha^* \tau}\right) + 2C_b e^{\alpha^* \tau}\int_{\tau-r}^{\tau} \Vert u(s) \Vert^2 ds\\ \displaystyle \qquad\qquad+\, 2C_b \int_{\tau}^{t} e^{\alpha^* s} \Vert u(s) \Vert^2 ds + 2 \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,. \end{array}$$

We multiply this estimate by eβ€“Ξ±βˆ—t, we obtain

Ξ³1(t)≀eβˆ’Ξ±βˆ—(tβˆ’Ο„)Ξ³1(Ο„)+2Cbeβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+2Cbeβˆ’Ξ±βˆ—tβˆ«Ο„teΞ±βˆ—sβˆ₯u(s)βˆ₯2ds+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \gamma_1(t) \leq e^{-\alpha^* (t-\tau)} \gamma_1 (\tau) +2C_b e^{-\alpha^* (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s) \Vert^2 ds \nonumber\\ \displaystyle \qquad\,\,+\,2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) + 2C_b e^{-\alpha^* t} \int_{\tau}^{t} e^{\alpha^* s} \Vert u(s) \Vert^2 ds \nonumber\\ \displaystyle \qquad\,\,+\,2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,. \end{array}$$

On the one hand, since H01(Ξ©)βŠ‚L2(Ξ©)andH01(Ξ©)βŠ‚Lp(Ξ©),$\begin{array}{} \displaystyle H^1_0(\Omega) \subset L^2(\Omega)\, {\rm and}\, H^1_0(\Omega) \subset L^p(\Omega)\,, \end{array}$we have

Ξ³1(Ο„)=βˆ₯u(Ο„)βˆ₯2+βˆ₯βˆ‡u(Ο„)βˆ₯2+2ΞΌ1β€²βˆ₯u(Ο„)βˆ₯Lp(Ξ©)p,≀(1+Ξ»1βˆ’1)βˆ₯βˆ‡u(Ο„)βˆ₯2+2ΞΌ1β€²βˆ₯u(Ο„)βˆ₯Lp(Ξ©)p,≀(1+Ξ»1βˆ’1)βˆ₯βˆ‡u(Ο„)βˆ₯2+k1βˆ₯βˆ‡u(Ο„)βˆ₯p,≀k2(1+Ξ»1βˆ’1)βˆ₯βˆ‡u(Ο„)βˆ₯p+k1βˆ₯βˆ‡u(Ο„)βˆ₯p,≀k3βˆ₯βˆ‡u(Ο„)βˆ₯p.$$\begin{array}{} \displaystyle \gamma_1 (\tau) = \Vert u(\tau) \Vert^2 + \Vert \nabla u(\tau) \Vert^2 + 2\mu'_1 \Vert u(\tau) \Vert_{L^p(\Omega)}^p \,,\nonumber\\ \displaystyle \qquad\,\,\,\leq (1+ \lambda_1^{-1}) \Vert \nabla u(\tau) \Vert^2 + 2\mu'_1 \Vert u(\tau) \Vert_{L^p(\Omega)}^p \,,\nonumber\\ \displaystyle \qquad\,\,\, \leq (1+ \lambda_1^{-1}) \Vert \nabla u(\tau) \Vert^2 + k_1 \Vert \nabla u(\tau) \Vert^p\,,\nonumber\\ \displaystyle \qquad\,\,\, \leq k_2 (1+ \lambda_1^{-1}) \Vert \nabla u(\tau) \Vert^p + k_1 \Vert \nabla u(\tau) \Vert^p \,,\nonumber\\ \displaystyle \qquad\,\,\,\leq k_3 \Vert \nabla u(\tau) \Vert^p\,. \end{array}$$

So, by (3.17), (3.20) and (3.21), one finds

βˆ₯u(t)βˆ₯2+βˆ₯βˆ‡u(t)βˆ₯2+2ΞΌ1β€²βˆ₯u(t)βˆ₯Lp(Ξ©)p≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2Cbeβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+2Cbeβˆ’Ξ±βˆ—tβˆ«Ο„teΞ±βˆ—sβˆ₯u(s)βˆ₯2ds+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \,\,\,\,\,\Vert u(t) \Vert^2 + \Vert \nabla u(t) \Vert^2 + 2\mu'_1 \Vert u(t) \Vert_{L^p(\Omega)}^p \leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p \\ \displaystyle +2C_b e^{-\alpha^* (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s) \Vert^2 ds + 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) \\ \displaystyle + 2C_b e^{-\alpha^* t} \int_{\tau}^{t} e^{\alpha^* s} \Vert u(s) \Vert^2 ds + 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds\,. \end{array}$$

From this last estimate and (3.8), we have

βˆ₯βˆ‡u(t)βˆ₯2≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2Cbeβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2Cbeβˆ’Ξ±βˆ—tβˆ«Ο„teΞ±βˆ—sβˆ₯u(s)βˆ₯2ds,≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2Cbeβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cb2Ξ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+2CbΞ·βˆ’1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds,≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbeβˆ’Ξ±βˆ—(tβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ«Ο„βˆ’rΟ„βˆ₯u(s)βˆ₯2ds+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \Vert \nabla u(t) \Vert^2 \leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b e^{-\alpha^* (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s) \Vert^2 ds \\ \displaystyle \qquad\qquad\,+\, 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) + 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \\ \displaystyle \qquad\qquad\, +\, 2C_b e^{-\alpha^* t} \int_{\tau}^{t} e^{\alpha^* s} \Vert u(s) \Vert^2 ds \,,\\ \displaystyle \qquad\qquad\, \leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b e^{-\alpha^* (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s) \Vert^2 ds \\ \displaystyle \qquad\qquad\, + \,2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) + 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \\ \displaystyle \qquad\qquad\, +\, 2C_b \eta^{-1} e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 + 2C^2_b \eta^{-1} e^{-\alpha (t-\tau)}\int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds \\ \displaystyle \qquad\qquad\,+\, 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (t-\tau)}\right) + 2C_b \eta^{-1} e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,,\\ \displaystyle \qquad\qquad\,\leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2\\ \displaystyle \qquad\qquad\,+\, 2C_b \left(e^{-\alpha^* (t-\tau)} + C_b \eta^{-1} e^{-\alpha (t-\tau)} \right) \int_{\tau-r}^{\tau} \Vert u(s)\Vert^2 ds \\ \displaystyle \qquad\qquad\,+\,2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (t-\tau)}\right) \\ \displaystyle \qquad\qquad\,+\,2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

In the fact that

βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2≀rβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2,$$\begin{array}{} \displaystyle \Vert \varphi \Vert_{L^2([-r,0]; L^2(\Omega))}^2 \leq r \Vert \varphi \Vert_{C([-r,0]; L^2(\Omega))}^2\,, \end{array}$$

one has

βˆ₯βˆ‡u(t)βˆ₯2≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(tβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’Ο„)+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(tβˆ’Ο„)+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds≀k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(tβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’1+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’1+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \quad\displaystyle \Vert \nabla u(t) \Vert^2 \leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 \nonumber\\ \displaystyle + 2C_br \left(e^{-\alpha^* (t-\tau)} + C_b \eta^{-1} e^{-\alpha (t-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \nonumber\\ \displaystyle + 2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-\tau)}\right) + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (t-\tau)}\right) \nonumber\\ \displaystyle + 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,\nonumber\\ \displaystyle \leq k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 \nonumber\\ + 2C_br \left(e^{-\alpha^* (t-\tau)} + C_b \eta^{-1} e^{-\alpha (t-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \nonumber\\ \displaystyle + 2c \vert \Omega \vert {\alpha^*}^{-1} + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \nonumber\\ \displaystyle + 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds\,. \end{array}$$

If we take t β‰₯ Ο„ + r i.e. t + ΞΈ β‰₯ Ο„, it follows

βˆ₯βˆ‡u(t+ΞΈ)βˆ₯2≀k3eβˆ’Ξ±βˆ—(t+ΞΈβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(t+ΞΈβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(t+ΞΈβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(t+ΞΈβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(t+ΞΈβˆ’Ο„)+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(t+ΞΈβˆ’Ο„)+2eβˆ’Ξ±βˆ—(t+ΞΈ)βˆ«βˆ’βˆžt+ΞΈeΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±(t+ΞΈ)βˆ«βˆ’βˆžt+ΞΈeΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert \nabla u(t+\theta) \Vert^2 \leq k_3 e^{-\alpha^* (t+\theta-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t+\theta- \tau)}\Vert u(\tau) \Vert^2 \\ \displaystyle +\,2C_br \left(e^{-\alpha^* (t+\theta-\tau)} + C_b \eta^{-1} e^{-\alpha (t+\theta-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \\ \displaystyle +\,2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t+\theta-\tau)}\right)+ 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (t+\theta-\tau)}\right) \\ \displaystyle +\,2 e^{-\alpha^* (t+\theta)} \int_{-\infty}^{t+\theta} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha (t+\theta)}\int_{-\infty}^{t+\theta} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

Hence,

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];H01(Ξ©))2=supθ∈[βˆ’r,0]βˆ₯βˆ‡u(t+ΞΈ)βˆ₯2,≀k3eβˆ’Ξ±βˆ—(tβˆ’rβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(tβˆ’rβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(tβˆ’rβˆ’Ο„)+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(tβˆ’rβˆ’Ο„)+2eβˆ’Ξ±βˆ—(tβˆ’r)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert U(t,\tau)(u^0,\varphi) \Vert^2_{C([-r,0];H^1_0(\Omega))} = \sup_{\theta\in[-r,0]} \Vert \nabla u(t+\theta) \Vert^2\,,\\ \displaystyle \leq k_3 e^{-\alpha^* (t-r-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t-r- \tau)}\Vert u(\tau) \Vert^2 \\ \displaystyle +\,2C_br \left(e^{-\alpha^* (t-r-\tau)} + C_b \eta^{-1} e^{-\alpha (t-r-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \\ \displaystyle +\,2c \vert \Omega \vert {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (t-r-\tau)}\right)+ 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (t-r-\tau)}\right) \\ \displaystyle +\,2 e^{-\alpha^* (t-r)} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \,. \end{array}$$

So, we obtain

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];H01(Ξ©))2≀k3eβˆ’Ξ±βˆ—(tβˆ’rβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(tβˆ’rβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’rβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—r+2CbΞ±βˆ’1Ξ·βˆ’1eΞ±r+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds+2eβˆ’Ξ±βˆ—(tβˆ’r)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \quad\Vert U(t,\tau)(u^0,\varphi) \Vert^2_{C([-r,0];H^1_0(\Omega))} \nonumber\\ \displaystyle \leq k_3 e^{-\alpha^* (t-r-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t-r- \tau)}\Vert u(\tau) \Vert^2 \nonumber\\ \displaystyle +\,2C_br \left(e^{-\alpha^* (t-r-\tau)} + C_b \eta^{-1} e^{-\alpha (t-r-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \nonumber\\ \displaystyle +\, 2c \vert \Omega \vert \left({\alpha^*}^{-1} e^{\alpha^* r }+ 2C_b \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \nonumber\\ \displaystyle + \,2C_b \eta^{-1} e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \nonumber\\ \displaystyle + \,2 e^{-\alpha^* (t-r)} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \,. \end{array}$$

Similarly to the Lemma 3, let 𝓑 be the set of all functions ρ : ℝ ⟢ (0, + ∞) such that

limtβ†’βˆ’βˆžeΞ±βˆ—tρ2(t)=0,$$\begin{array}{} \displaystyle \lim_{t\rightarrow -\infty} e^{\alpha^* t} \rho^{2}(t) =0\,, \end{array}$$

by 𝓓 we denote the class of all families D^={D(t):t∈R}βŠ‚P(C([βˆ’r,0];H01(Ξ©)))$\begin{array}{} \displaystyle \mathbf{\widehat{D}} = \{D(t) : t\in \mathbb{R} \} \subset \mathcal{P}(C([-r,0];H^1_0(\Omega))) \end{array}$ such that D(t) βŠ‚ BΒ―C([βˆ’r,0];H01(Ξ©))(0,ρ(t)),$\begin{array}{} \displaystyle \mathbf{\overline{B}}_{C([-r,0];H^1_0(\Omega))}(0,\rho(t))\,, \end{array}$ for some ρ ∈ 𝓑, where we denote by BΒ―C([βˆ’r,0];H01(Ξ©))(0,ρ(t))$\begin{array}{} \displaystyle \mathbf{\overline{B}}_{C([-r,0];H^1_0(\Omega))}(0,\rho(t)) \end{array}$ the closed ball in C([βˆ’r,0];H01(Ξ©))$\begin{array}{} \displaystyle C([-r,0];H^1_0(\Omega)) \end{array}$ centered at 0 with radius ρ(t). Let

R22(t)=2c|Ξ©|Ξ±βˆ—βˆ’1eΞ±βˆ—r+2CbΞ±βˆ’1Ξ·βˆ’1eΞ±r+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’r)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds+2eβˆ’Ξ±βˆ—(tβˆ’r)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds.$$\begin{array}{} \displaystyle R_2^2(t)= 2c \vert \Omega \vert \left({\alpha^*}^{-1} e^{\alpha^* r }+ 2C_b \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \\ \displaystyle \qquad\,\,\,\,+\,2C_b \eta^{-1} e^{-\alpha (t-r)}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds + 2 e^{-\alpha^* (t-r)} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \,. \end{array}$$

Thus, for all DΜ‚ ∈ 𝓓 and all t ∈ ℝ, by (3.23) there exists Ο„0 (DΜ‚, t) ≀ t such that

βˆ₯U(t,Ο„)(u0,Ο†)βˆ₯C([βˆ’r,0];H01(Ξ©))2≀R22(t),$$\begin{array}{} \displaystyle \Vert U(t,\tau)(u^0,\varphi) \Vert_{C([-r,0];H^1_0(\Omega))}^2 \leq R_2^2(t)\,, \end{array}$$

for all Ο„ ≀ Ο„0(DΜ‚, t), this means that B2(t)=BΒ―C([βˆ’r,0];H01(Ξ©))(0,R2(t))$\begin{array}{} \displaystyle B_2(t) = \overline{B}_{C([-r,0]; H^1_0(\Omega))}(0, R_2(t)) \end{array}$ is pullback 𝓓-absorbing for the mapping U(t, Ο„).

The proof of the proposition is completed. β—Ό

Existence of pullback D-attractor

To prove the existence of pullback 𝓓-attractor, we need to prove the following lemma.

Lemma 4

Assume that conditions oflemma (3)are satisfied. Then the process {S(t, Ο„)} corresponding to(1.1)is pullback 𝓓-asymptotically compact.

Proof

Let t ∈ ℝ, DΜ‚ ∈ 𝓓, a sequences Ο„n β†’nβ†’+∞ – ∞ and (u0, n, Ο†n ∈ D(Ο„n), be fixed. We have to check that the sequence

{S(t,Ο„n)(u0,n,Ο†n)}={(u(t,Ο„n,(u0,n,Ο†n)),ut(.,Ο„n,(u0,n,Ο†n)))},$$\begin{array}{} \displaystyle \{S(t,\tau_n)(u^{0,n},\varphi^n)\}= \{(u(t,\tau_n, (u^{0,n},\varphi^n)), u_t(.,\tau_n, (u^{0,n},\varphi^n)))\}\,, \end{array}$$

is relatively compact in H. In order to show this, we need to prove that the sequence

{U(t,Ο„n)(u0,n,Ο†n)}={ut(.,Ο„n,(u0,n,Ο†n))}$$\begin{array}{} \displaystyle \{U(t,\tau_n)(u^{0,n},\varphi^n)\} = \{u_t(.,\tau_n, (u^{0,n},\varphi^n))\} \end{array}$$

is relatively compact in C([–r, 0];L2(Ξ©)). To this end, we use the Ascoli-Arzela theorem. In other words, we check

the equicontinuity property for the sequence {ut(.,Ο„n,(u0,n,Ο†n))}:={utn(.)},i.e.βˆ€Ξ΅>0,βˆƒΞ΄>0$\begin{array}{} \displaystyle \{u_t(.,\tau_n, (u^{0,n},\varphi^n))\}:= \{u_t^n(.)\}\,, \rm i.e.\,\, \forall \varepsilon \gt 0, \, \exists \delta \gt 0 \end{array}$ such that if |ΞΈ1βˆ’ΞΈ2|≀δ,thenβˆ₯utn(ΞΈ1)βˆ’utn(ΞΈ2)βˆ₯≀Ρ,forallΞΈ1>ΞΈ2∈[βˆ’r,0]$\begin{array}{} \displaystyle \vert \theta_1 -\theta_2 \vert \leq \delta \,,\, \rm then\, \Vert u^n_t(\theta_1) - u^n_t(\theta_2) \Vert \leq \varepsilon\,,\, for\, all\, \,\theta_1 \gt \theta_2 \in [-r,0]\, \end{array}$;

the uniform boundedness of {utn(ΞΈ)},$\begin{array}{} \displaystyle \{u^n_t(\theta)\}\,, \end{array}$ for all ΞΈ ∈ [–r, 0].

In order to prove (b), we consider un, u the corresponding solutions to (1.1), so by Lemma 1 we can deduce that {utn}$\begin{array}{} \displaystyle \{u^n_t\} \end{array}$ and {ut} are uniformly bounded in C([–r, 0]; L2(Ξ©)).

To prove (a), we proceed as follows:

βˆ₯utn(ΞΈ1)βˆ’utn(ΞΈ2)βˆ₯=βˆ₯u(t+ΞΈ1)βˆ’u(t+ΞΈ2)βˆ₯,=∫t+ΞΈ2t+ΞΈ1uβ€²(s)ds,β‰€βˆ«t+ΞΈ2t+ΞΈ1βˆ₯uβ€²(s)βˆ₯ds,β‰€βˆ«t+ΞΈ2t+ΞΈ1(βˆ₯Ξ”u(s)βˆ₯+βˆ₯f(u(s))βˆ₯+βˆ₯b(s,us)βˆ₯+βˆ₯g(s)βˆ₯)ds.$$\begin{array}{} \displaystyle \Vert u^n_t(\theta_1) - u^n_t(\theta_2) \Vert= \Vert u(t+\theta_1) - u(t+\theta_2)\Vert \,,\nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\,\,\,= \left\Vert \int_{t+\theta_2}^{t+\theta_1} u'(s) ds \right\Vert\,,\nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\,\,\,\leq \int_{t+\theta_2}^{t+\theta_1} \Vert u'(s) \Vert ds \,,\nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\,\,\,\leq \int_{t+\theta_2}^{t+\theta_1} \bigg( \Vert \Delta u(s) \Vert + \Vert f(u(s))\Vert + \Vert b(s,u_s)\Vert \nonumber\\ \displaystyle \qquad\qquad\qquad\quad\,\,\,\,\,+\, \Vert g(s)\Vert\bigg) ds\,. \end{array}$$

Now, we estimate the terms on the right hand side of this inequality

From the Holder inequality, we have

∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯dsβ‰€βˆ«t+ΞΈ2t+ΞΈ1ds1/2∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯2ds1/2,≀|ΞΈ1βˆ’ΞΈ2|1/2∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯2ds1/2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert ds \leq \left(\int_{t+\theta_2}^{t+\theta_1} ds\right)^{1/2} \left(\int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert^2 ds\right)^{1/2}\,,\\ \displaystyle \qquad\qquad\qquad\quad\quad\leq \vert \theta_1 - \theta_2 \vert^{1/2} \left(\int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert^2 ds\right)^{1/2}\,. \end{array}$$

On the one hand, we have

βˆ₯Ξ”uβˆ₯2≀λmβˆ₯βˆ‡uβˆ₯2.$$\begin{array}{} \displaystyle \Vert \Delta u \Vert^2 \leq \lambda_m \Vert \nabla u \Vert^2\,. \end{array}$$

So, using this inequality in (3.22) and integrating it over [t + ΞΈ2, t + ΞΈ1], one obtain

∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯2ds≀λm∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2ds≀k3Ξ»m∫t+ΞΈ2t+ΞΈ1eβˆ’Ξ±βˆ—(sβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯pds+2CbΞ·βˆ’1Ξ»m∫t+ΞΈ2t+ΞΈ1eβˆ’Ξ±(sβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2ds+2CbrΞ»m∫t+ΞΈ2t+ΞΈ1eβˆ’Ξ±βˆ—(sβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(sβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2ds+2c|Ξ©|Ξ»m∫t+ΞΈ2t+ΞΈ1Ξ±βˆ—βˆ’11βˆ’eβˆ’Ξ±βˆ—(sβˆ’Ο„)+CbΞ±βˆ’1Ξ·βˆ’11βˆ’eβˆ’Ξ±(sβˆ’Ο„)ds+2Ξ»m∫t+ΞΈ2t+ΞΈ1eβˆ’Ξ±βˆ—sβˆ«βˆ’βˆžseΞ±βˆ—sβ€²βˆ₯g(sβ€²)βˆ₯2dsβ€²ds+2CbΞ·βˆ’1Ξ»m∫t+ΞΈ2t+ΞΈ1eβˆ’Ξ±sβˆ«βˆ’βˆžseΞ±sβ€²βˆ₯g(sβ€²)βˆ₯2dsβ€²ds.$$\begin{array}{} \displaystyle \quad\int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert^2 ds \leq \lambda_m \int_{t+\theta_2}^{t+\theta_1} \Vert \nabla u(s) \Vert^2 ds \\ \displaystyle \leq k_3 \lambda_m \int_{t+\theta_2}^{t+\theta_1} e^{-\alpha^* (s-\tau)} \Vert \nabla u(\tau) \Vert^p ds + 2C_b \eta^{-1}\lambda_m \int_{t+\theta_2}^{t+\theta_1} e^{-\alpha(s- \tau)} \Vert u(\tau) \Vert^2 ds \\ \displaystyle +\,2C_br\lambda_m \int_{t+\theta_2}^{t+\theta_1} \left(e^{-\alpha^* (s-\tau)} + C_b \eta^{-1} e^{-\alpha (s-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 ds \\ \displaystyle +\, 2c \vert \Omega \vert \lambda_m \int_{t+\theta_2}^{t+\theta_1}\left( {\alpha^*}^{-1} \left ( 1 - e^{-\alpha^* (s-\tau)}\right) + C_b \alpha^{-1} \eta^{-1} \left(1- e^{-\alpha (s-\tau)}\right)\right) ds \\ \displaystyle +\, 2 \lambda_m \int_{t+\theta_2}^{t+\theta_1} e^{-\alpha^* s} \int_{-\infty}^{s} e^{\alpha^* s'}\Vert g(s') \Vert^2 ds'ds \\ \displaystyle +\, 2C_b \eta^{-1} \lambda_m \int_{t+\theta_2}^{t+\theta_1} e^{-\alpha s}\int_{-\infty}^{s} e^{\alpha s'} \Vert g(s') \Vert^2 ds'ds \,. \end{array}$$

Therefore, one obtains

∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯2ds≀k3Ξ»mβˆ₯βˆ‡u(Ο„)βˆ₯pΞ±βˆ—βˆ’1eβˆ’Ξ±βˆ—(tβˆ’Ο„)eβˆ’Ξ±βˆ—ΞΈ2βˆ’eβˆ’Ξ±βˆ—ΞΈ1+2CbΞ·βˆ’1Ξ»mβˆ₯u(Ο„)βˆ₯2Ξ±βˆ’1eβˆ’Ξ±(tβˆ’Ο„)eβˆ’Ξ±ΞΈ2βˆ’eβˆ’Ξ±ΞΈ1+2CbrΞ»mβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2Ξ±βˆ—βˆ’1eβˆ’Ξ±βˆ—(tβˆ’Ο„)eβˆ’Ξ±βˆ—ΞΈ2βˆ’eβˆ’Ξ±βˆ—ΞΈ1+2Cb2rΞ»mβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2Ξ·βˆ’1Ξ±βˆ’1eβˆ’Ξ±(tβˆ’Ο„)eβˆ’Ξ±ΞΈ2βˆ’eβˆ’Ξ±ΞΈ1+2c|Ξ©|Ξ»mΞ±βˆ—βˆ’11βˆ’Ξ±βˆ—βˆ’1eβˆ’Ξ±βˆ—(tβˆ’Ο„)eβˆ’Ξ±βˆ—ΞΈ2βˆ’eβˆ’Ξ±βˆ—ΞΈ1+2c|Ξ©|CbΞ·βˆ’1Ξ»mΞ±βˆ’11βˆ’Ξ±βˆ’1eβˆ’Ξ±(tβˆ’Ο„)eβˆ’Ξ±ΞΈ2βˆ’eβˆ’Ξ±ΞΈ1+2Ξ»mΞ±βˆ—βˆ’1eβˆ’Ξ±βˆ—ΞΈ2βˆ’eβˆ’Ξ±βˆ—ΞΈ1eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβ€²βˆ₯g(sβ€²)βˆ₯2dsβ€²+2CbΞ·βˆ’1Ξ»mΞ±βˆ’1eβˆ’Ξ±ΞΈ2βˆ’eβˆ’Ξ±ΞΈ1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβ€²βˆ₯g(sβ€²)βˆ₯2dsβ€²β†’0whenΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \quad\int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert^2 ds\\ \displaystyle \leq k_3 \lambda_m \Vert \nabla u(\tau) \Vert^p {\alpha^*}^{-1} e^{-\alpha^*(t- \tau)} \left(e^{-\alpha^* \theta_2} - e^{-\alpha^* \theta_1}\right)\\ \displaystyle +\, 2C_b \eta^{-1}\lambda_m \Vert u(\tau) \Vert^2 \alpha^{-1} e^{-\alpha (t- \tau)} \left(e^{-\alpha \theta_2} - e^{-\alpha \theta_1}\right)\\ \displaystyle +\, 2C_br\lambda_m \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 {\alpha^*}^{-1} e^{-\alpha^*(t- \tau)} \left(e^{-\alpha^* \theta_2} - e^{-\alpha^* \theta_1}\right)\\ \displaystyle +\,2C^2_br\lambda_m \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \eta^{-1} \alpha^{-1} e^{-\alpha (t- \tau)} \left(e^{-\alpha \theta_2} - e^{-\alpha \theta_1}\right)\\ \displaystyle +\, 2c \vert \Omega \vert \lambda_m {\alpha^*}^{-1} \left ( 1 - {\alpha^*}^{-1} e^{-\alpha^*(t- \tau)} \left(e^{-\alpha^* \theta_2} - e^{-\alpha^* \theta_1}\right)\right)\\ \displaystyle +\,2c \vert \Omega \vert C_b \eta^{-1} \lambda_m \alpha^{-1} \left(1- {\alpha}^{-1} e^{-\alpha(t- \tau)} \left(e^{-\alpha \theta_2} - e^{-\alpha \theta_1}\right)\right)\\ \displaystyle +\, 2 \lambda_m {\alpha^*}^{-1} \left( e^{-\alpha^*\theta_2} - e^{-\alpha^*\theta_1} \right) e^{-\alpha^*t} \int_{-\infty}^{t} e^{\alpha^* s'}\Vert g(s') \Vert^2 ds'\\ \displaystyle + 2C_b \eta^{-1} \lambda_m \alpha^{-1} \left( e^{-\alpha \theta_2} - e^{-\alpha \theta_1} \right) e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s'}\Vert g(s') \Vert^2 ds'\\ \displaystyle \quad\to 0 \; \mbox{when} \; \theta_1 \to \theta_2\,. \end{array}$$

Hence, it follows that

∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯ds≀|ΞΈ1βˆ’ΞΈ2|1/2∫t+ΞΈ2t+ΞΈ1βˆ₯Ξ”u(s)βˆ₯2ds1/2β†’0whenΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert ds \leq \vert \theta_1 - \theta_2 \vert^{1/2} \left(\int_{t+\theta_2}^{t+\theta_1} \Vert \Delta u(s) \Vert^2 ds\right)^{1/2}\\ \displaystyle \qquad\qquad\qquad\qquad\quad \to 0 \; \mbox{when} \; \theta_1 \to \theta_2\,. \end{array}$$

From the Holder inequality, we have

∫t+ΞΈ2t+ΞΈ1βˆ₯f(u(s))βˆ₯ds≀|ΞΈ1βˆ’ΞΈ2|1/2β‹…βˆ«t+ΞΈ2t+ΞΈ1βˆ₯f(u(s))βˆ₯2ds1/2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert f(u(s))\Vert ds \leq \vert \theta_1 - \theta_2 \vert^{1/2} \cdot \left( \int_{t+\theta_2}^{t+\theta_1} \Vert f(u(s))\Vert^2 ds \right)^{1/2} \,. \end{array}$$

Using (1.4) and the convexity of the power, one gets

βˆ₯f(u(t))βˆ₯2=∫Ω|f(u(t,x))|2dx≀2l2βˆ₯u(t)βˆ₯2(pβˆ’1)+2l2|Ξ©|.$$\begin{array}{} \displaystyle \Vert f(u(t))\Vert^2 = \int_{\Omega} \vert f(u(t,x))\vert^2 dx \,\\ \displaystyle \qquad\qquad\,\,\,\,\leq 2l^2 \Vert u(t) \Vert^{2(p-1)} + 2l^2 \vert \Omega \vert\,. \end{array}$$

Integrating this estimate over [t + ΞΈ2, t + ΞΈ1], one finds

∫t+ΞΈ2t+ΞΈ1βˆ₯f(u(s))βˆ₯2ds≀2l2∫t+ΞΈ2t+ΞΈ1βˆ₯u(s)βˆ₯2(pβˆ’1)ds+2l2|Ξ©|β‹…|ΞΈ1βˆ’ΞΈ2|.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert f(u(s))\Vert^2 ds \leq 2l^2 \int_{t+\theta_2}^{t+\theta_1} \Vert u(s) \Vert^{2(p-1)} ds + 2l^2 \vert \Omega \vert \cdot \vert \theta_1 -\theta_2 \vert \,. \end{array}$$

Since Ξ»1βˆ₯uβˆ₯2 ≀ βˆ₯βˆ‡uβˆ₯2, we have

∫t+ΞΈ2t+ΞΈ1βˆ₯f(u(s))βˆ₯2ds≀2l2Ξ»1(pβˆ’1)∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2(pβˆ’1)ds+2l2|Ξ©|β‹…|ΞΈ1βˆ’ΞΈ2|.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert f(u(s))\Vert^2 ds \leq 2l^2 \lambda_1^{(p-1)}\int_{t+\theta_2}^{t+\theta_1} \Vert \nabla u(s) \Vert^{2(p-1)} ds + 2l^2 \vert \Omega \vert \cdot \vert \theta_1 -\theta_2 \vert \,. \end{array}$$

From (3.22), one has

βˆ₯βˆ‡u(t)βˆ₯2(pβˆ’1)≀{k3eβˆ’Ξ±βˆ—(tβˆ’Ο„)βˆ₯βˆ‡u(Ο„)βˆ₯p+2CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯u(Ο„)βˆ₯2+2Cbreβˆ’Ξ±βˆ—(tβˆ’Ο„)+CbΞ·βˆ’1eβˆ’Ξ±(tβˆ’Ο„)βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2+2c|Ξ©|Ξ±βˆ—βˆ’1+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’1+2eβˆ’Ξ±βˆ—tβˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds+2CbΞ·βˆ’1eβˆ’Ξ±tβˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds}(pβˆ’1).$$\begin{array}{} \displaystyle \quad\Vert \nabla u(t) \Vert^{2(p-1)} \leq \bigg\{ k_3 e^{-\alpha^* (t-\tau)} \Vert \nabla u(\tau) \Vert^p + 2C_b \eta^{-1} e^{-\alpha(t- \tau)}\Vert u(\tau) \Vert^2 \\ \displaystyle +\, 2C_br \left(e^{-\alpha^* (t-\tau)} + C_b \eta^{-1} e^{-\alpha (t-\tau)} \right) \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \\ \displaystyle +\, 2c \vert \Omega \vert {\alpha^*}^{-1} + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1} \\ \displaystyle +\, 2 e^{-\alpha^* t} \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds + 2C_b \eta^{-1} e^{-\alpha t}\int_{-\infty}^{t} e^{\alpha s} \Vert g(s) \Vert^2 ds \bigg\}^{(p-1)}\,. \end{array}$$

By applying the convexity of power three times, one gets

βˆ₯βˆ‡u(t)βˆ₯2(pβˆ’1)≀22(pβˆ’2)k3βˆ₯βˆ‡u(Ο„)βˆ₯p+2Cbrβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2(pβˆ’1)eβˆ’(pβˆ’1)Ξ±βˆ—(tβˆ’Ο„)+22(pβˆ’2)2CbΞ·βˆ’1βˆ₯u(Ο„)βˆ₯2+2Cb2rΞ·βˆ’1βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2(pβˆ’1)eβˆ’(pβˆ’1)Ξ±(tβˆ’Ο„)+22(pβˆ’2)2c|Ξ©|Ξ±βˆ—βˆ’1+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’1(pβˆ’1)+23(pβˆ’2)2(pβˆ’1)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds(pβˆ’1)eβˆ’(pβˆ’1)Ξ±βˆ—t+23(pβˆ’2)(2CbΞ·βˆ’1)(pβˆ’1)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds(pβˆ’1)eβˆ’(pβˆ’1)Ξ±t.$$\begin{array}{} \displaystyle \quad\Vert \nabla u(t) \Vert^{2(p-1)} \\ \displaystyle \leq 2^{2(p-2)}\left(k_3 \Vert \nabla u(\tau) \Vert^p + 2C_br\Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2\right)^{(p-1)}e^{-(p-1)\alpha^* (t-\tau)} \\ \displaystyle +\, 2^{2(p-2)} \left(2C_b \eta^{-1} \Vert u(\tau) \Vert^2 + 2C^2_br \eta^{-1} \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \right)^{(p-1)}e^{-(p-1)\alpha (t-\tau)} \\ \displaystyle +\, 2^{2(p-2)}\left(2c \vert \Omega \vert {\alpha^*}^{-1} + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1}\right)^{(p-1)}\\ \displaystyle + \,2^{3(p-2)} 2^{(p-1)} \left( \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \right)^{(p-1)} e^{-(p-1)\alpha^* t}\\ \displaystyle +\, 2^{3(p-2)} (2C_b \eta^{-1})^{(p-1)} \left( \int_{-\infty}^{t} e^{\alpha s}\Vert g(s) \Vert^2 ds \right)^{(p-1)} e^{-(p-1)\alpha t}\,. \end{array}$$

Integrating it over [t + ΞΈ2, t + ΞΈ1], one obtains

∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2(pβˆ’1)ds≀22(pβˆ’2)k3βˆ₯βˆ‡u(Ο„)βˆ₯p+2Cbrβˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2(pβˆ’1)∫t+ΞΈ2t+ΞΈ1eβˆ’(pβˆ’1)Ξ±βˆ—(sβˆ’Ο„)ds+22(pβˆ’2)2CbΞ·βˆ’1βˆ₯u(Ο„)βˆ₯2+2Cb2rΞ·βˆ’1βˆ₯Ο†βˆ₯C([βˆ’r,0];L2(Ξ©))2(pβˆ’1)∫t+ΞΈ2t+ΞΈ1eβˆ’(pβˆ’1)Ξ±(sβˆ’Ο„)ds+22(pβˆ’2)2c|Ξ©|Ξ±βˆ—βˆ’1+4Cbc|Ξ©|Ξ±βˆ’1Ξ·βˆ’1(pβˆ’1)|ΞΈ1βˆ’ΞΈ2|+23(pβˆ’2)2(pβˆ’1)βˆ«βˆ’βˆžteΞ±βˆ—sβˆ₯g(s)βˆ₯2ds(pβˆ’1)∫t+ΞΈ2t+ΞΈ1eβˆ’(pβˆ’1)Ξ±βˆ—sds+23(pβˆ’2)(2CbΞ·βˆ’1)(pβˆ’1)βˆ«βˆ’βˆžteΞ±sβˆ₯g(s)βˆ₯2ds(pβˆ’1)∫t+ΞΈ2t+ΞΈ1eβˆ’(pβˆ’1)Ξ±sds.$$\begin{array}{} \displaystyle \quad\int_{t+\theta_2}^{t+\theta_1}\Vert \nabla u(s) \Vert^{2(p-1)} ds\\ \displaystyle \leq 2^{2(p-2)}\left(k_3 \Vert \nabla u(\tau) \Vert^p + 2C_br\Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2\right)^{(p-1)} \int_{t+\theta_2}^{t+\theta_1} e^{-(p-1)\alpha^* (s-\tau)} ds \\ \displaystyle +\, 2^{2(p-2)} \left(2C_b \eta^{-1} \Vert u(\tau) \Vert^2 + 2C^2_br \eta^{-1} \Vert \varphi\Vert_{C([-r,0]; L^2(\Omega))}^2 \right)^{(p-1)}\int_{t+\theta_2}^{t+\theta_1} e^{-(p-1)\alpha (s-\tau)} ds \\ \displaystyle +\, 2^{2(p-2)}\left(2c \vert \Omega \vert {\alpha^*}^{-1} + 4C_b c\vert \Omega \vert \alpha^{-1} \eta^{-1}\right)^{(p-1)} \vert \theta_1- \theta_2 \vert \\ \displaystyle +\, 2^{3(p-2)} 2^{(p-1)} \left( \int_{-\infty}^{t} e^{\alpha^* s}\Vert g(s) \Vert^2 ds \right)^{(p-1)} \int_{t+\theta_2}^{t+\theta_1} e^{-(p-1)\alpha^* s} ds\\ \displaystyle +\, 2^{3(p-2)} (2C_b \eta^{-1})^{(p-1)} \left( \int_{-\infty}^{t} e^{\alpha s}\Vert g(s) \Vert^2 ds \right)^{(p-1)} \int_{t+\theta_2}^{t+\theta_1} e^{-(p-1)\alpha s} ds\,. \end{array}$$

Therefore, we get

∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2(pβˆ’1)ds≀C1β€²eβˆ’(pβˆ’1)Ξ±βˆ—(tβˆ’Ο„)eβˆ’(pβˆ’1)Ξ±βˆ—ΞΈ2βˆ’eβˆ’(pβˆ’1)Ξ±βˆ—ΞΈ1+C2β€²eβˆ’(pβˆ’1)Ξ±(tβˆ’Ο„)eβˆ’(pβˆ’1)Ξ±ΞΈ2βˆ’eβˆ’(pβˆ’1)Ξ±ΞΈ1+C3β€²|ΞΈ1βˆ’ΞΈ2|+C4β€²eβˆ’(pβˆ’1)Ξ±teβˆ’(pβˆ’1)Ξ±ΞΈ2βˆ’eβˆ’(pβˆ’1)Ξ±ΞΈ1+C5β€²eβˆ’(pβˆ’1)Ξ±βˆ—teβˆ’(pβˆ’1)Ξ±βˆ—ΞΈ2βˆ’eβˆ’(pβˆ’1)Ξ±βˆ—ΞΈ1β†’0asΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1}\Vert \nabla u(s) \Vert^{2(p-1)} ds \leq C'_1 e^{-(p-1)\alpha^*(t- \tau)} \left(e^{-(p-1)\alpha^* \theta_2} - e^{-(p-1)\alpha^* \theta_1}\right)\\ \displaystyle \qquad\qquad\qquad\qquad\qquad+\,\, C'_2 e^{-(p-1)\alpha(t- \tau)} \left(e^{-(p-1)\alpha \theta_2} - e^{-(p-1)\alpha \theta_1}\right)\\ \displaystyle \qquad\qquad\qquad\qquad\qquad+\,\, C'_3 \vert \theta_1- \theta_2 \vert + C'_4 e^{-(p-1)\alpha t} \left( e^{-(p-1)\alpha \theta_2} - e^{-(p-1)\alpha \theta_1}\right)\\ \displaystyle \qquad\qquad\qquad\qquad\qquad+\,\, C'_5 e^{-(p-1)\alpha^* t} \left( e^{-(p-1)\alpha^* \theta_2} - e^{-(p-1)\alpha^* \theta_1}\right)\\ \displaystyle \qquad\qquad\qquad\qquad\qquad\quad\to 0 \; \mbox{as}\; \theta_1 \to \theta_2\,. \end{array}$$

Hence by (3.27), (3.28) and this last estimate we deduce that

∫t+ΞΈ2t+ΞΈ1βˆ₯f(u(s))βˆ₯dsβ†’0asΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert f(u(s))\Vert ds \;\to 0 \; \mbox{as}\; \theta_1 \to \theta_2\,. \end{array}$$

Similarly, by the Holder inequality, we have

∫t+ΞΈ2t+ΞΈ1βˆ₯b(s,us)βˆ₯ds≀|ΞΈ1βˆ’ΞΈ2|1/2β‹…βˆ«t+ΞΈ2t+ΞΈ1βˆ₯b(s,us)βˆ₯2ds1/2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert b(s,u_s)\Vert ds \leq \vert \theta_1 - \theta_2 \vert^{1/2} \cdot \left( \int_{t+\theta_2}^{t+\theta_1} \Vert b(s,u_s)\Vert^2 ds \right)^{1/2} \,. \end{array}$$

On the other hand, by (II), (1.7) and since Ξ»1βˆ₯uβˆ₯2 ≀ βˆ₯βˆ‡uβˆ₯2, one has

∫t+ΞΈ2t+ΞΈ1βˆ₯b(s,us)βˆ₯2ds≀Cb∫t+ΞΈ2βˆ’rt+ΞΈ1βˆ₯u(s)βˆ₯2dsβ‰€βˆ«t+ΞΈ2βˆ’rt+ΞΈ2βˆ₯u(s)βˆ₯2ds+∫t+ΞΈ2t+ΞΈ1βˆ₯u(s)βˆ₯2ds≀βˆ₯Ο†βˆ₯L2([βˆ’r,0];L2(Ξ©))2+Ξ»1βˆ’1∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2ds.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert b(s,u_s)\Vert^2 ds \leq C_b \int_{t+\theta_2-r}^{t+\theta_1} \Vert u(s) \Vert^2 ds \nonumber\\ \displaystyle \qquad\qquad\qquad\qquad\,\,\,\,\leq \int_{t+\theta_2-r}^{t+\theta_2} \Vert u(s) \Vert^2 ds + \int_{t+\theta_2}^{t+\theta_1} \Vert u(s) \Vert^2 ds \nonumber\\ \displaystyle \qquad\qquad\qquad\qquad\,\,\,\,\leq \Vert \varphi \Vert^2_{L^2([-r,0]; L^2(\Omega))} + \lambda_1^{-1} \int_{t+\theta_2}^{t+\theta_1} \Vert \nabla u(s) \Vert^2 ds\,. \end{array}$$

By (3.26), it follows that

∫t+ΞΈ2t+ΞΈ1βˆ₯βˆ‡u(s)βˆ₯2dsβ†’0asΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert \nabla u(s) \Vert^2 ds \; \to 0 \; \mbox{as}\; \theta_1 \to \theta_2 \,. \end{array}$$

Then, (3.29), (3.30) and this last estimate, we deduce that

∫t+ΞΈ2t+ΞΈ1βˆ₯b(s,us)βˆ₯dsβ†’0whenΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert b(s,u_s)\Vert ds \; \to 0 \; \mbox{when}\; \theta_1 \to \theta_2 \,. \end{array}$$

Finally, we use the Holder inequality to obtain

∫t+ΞΈ2t+ΞΈ1βˆ₯g(s)βˆ₯ds≀|ΞΈ1βˆ’ΞΈ2|1/2β‹…βˆ«t+ΞΈ2t+ΞΈ1βˆ₯g(s)βˆ₯2ds1/2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert g(s)\Vert ds \leq \vert \theta_1 - \theta_2 \vert^{1/2} \cdot \left(\int_{t+\theta_2}^{t+\theta_1} \Vert g(s)\Vert^2 ds\right)^{1/2} \,. \end{array}$$

Since g∈Lloc2(R;L2(Ω)),$\begin{array}{} \displaystyle g\in L^2_{loc}(\mathbb{R}; L^2(\Omega))\,, \end{array}$ one gets

∫t+ΞΈ2t+ΞΈ1βˆ₯g(s)βˆ₯ds≀|ΞΈ1βˆ’ΞΈ2|1/2β‹…βˆ₯gβˆ₯L2([t+ΞΈ2,t+ΞΈ1];L2(Ξ©))β†’0whenΞΈ1β†’ΞΈ2.$$\begin{array}{} \displaystyle \int_{t+\theta_2}^{t+\theta_1} \Vert g(s)\Vert ds \leq \vert \theta_1 - \theta_2 \vert^{1/2} \cdot \Vert g \Vert_{L^2([t+\theta_2,t+\theta_1]; L^2(\Omega))}\\ \displaystyle \qquad\qquad\qquad\quad\,\,\,\,\,\, \to 0 \; \mbox{when}\; \theta_1 \to \theta_2 \,. \end{array}$$

Consequently, by 1), 2), 3), 4) and (3.25), we deduce that

βˆ₯u(t+ΞΈ1)βˆ’u(t+ΞΈ2)βˆ₯β†’0whenΞΈ1β†’ΞΈ2,$$\begin{array}{} \displaystyle \Vert u(t+\theta_1) - u(t+\theta_2)\Vert \; \to 0 \; \mbox{when}\; \theta_1 \to \theta_2 \,, \end{array}$$

and this ensures the equicontinuity property in C([–r, 0]; L2(Ξ©)); i.e. the sequence {U(t, Ο„n)(u0, n, Ο†n)} is relatively compact in C([–r, 0]; L2(Ξ©)).

Since we have S(t, Ο„n)(u0, n, Ο†n) = j(U(t, Ο„n)(u0, n, Ο†n)), so {S(t, Ο„n)(u0, n, Ο†n)} is relatively compact in the space L2(Ξ©) Γ— C([–r, 0]; L2(Ξ©)) and by the continuous injection of L2(Ξ©) Γ— C([–r, 0]; L2(Ξ©)) in H, we deduce that {S(t, Ο„n)(u0, n, Ο†n)} is relatively compact in H. The proof of this lemma is completed. β—Ό

By Proposition 1 and Lemma 4, we proved that the process S(t, Ο„) has a pullback 𝓓-absorbing set and it is pullback 𝓓-asymptotically compact, then by Theorem 2 we can deduce the following result.

Theorem 4

The process {S(t, Ο„)} corresponding to(1.1)has a pullback 𝓓-attractorΓ‚ = {A(t) : t ∈ ℝ} in H. Furetheremore, Γ‚ βŠ‚ L2(Ξ©) Γ— C([–r, 0]; L2(Ξ©)).

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics