Open Access

Poisson and symplectic reductions of 4–DOF isotropic oscillators. The van der Waals system as benchmark


Cite

M. Andoyer, (1923), Cours de Mécanique Céleste, Vol I, Gauthier-Villars, Paris.AndoyerM.1923Cours de Mécanique CélesteIGauthier-VillarsParisSearch in Google Scholar

H. Broer et al., (2003), Bifurcations in Hamiltonian Systems. Computing Singularities by Gröner Bases, Springer-Verlag, Berlin-Heidelberg. 10.1007/b10414BroerH.2003Bifurcations in Hamiltonian Systems. Computing Singularities by Gröner BasesSpringer-VerlagBerlin-Heidelberg10.1007/b10414Open DOISearch in Google Scholar

T. Becker and V. Weispfenning, (1993), Gröner bases. A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York. 10.1007/978-1-4612-0913-3BeckerT.WeispfenningV.1993Gröner bases. A Computational Approach to Commutative AlgebraGraduate Texts in Mathematics, Springer-VerlagNew York10.1007/978-1-4612-0913-3Open DOISearch in Google Scholar

D.A. Cox, J. Little and D. O’Shea, (2007), Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York. 10.1007/978-0-387-35651-8CoxD.A.LittleJ.O’SheaD.2007Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative AlgebraUndergraduate Texts in Mathematics, Springer-VerlagNew York10.1007/978-0-387-35651-8Open DOISearch in Google Scholar

F. Crespo, (2015), Hopf Fibration Reduction of a Quartic Model. An Application to Rotational and Orbital Dynamics, Ph.D. thesis, Universidad de Murcia, 2015, 208 pp.CrespoF.2015Hopf Fibration Reduction of a Quartic Model. An Application to Rotational and Orbital DynamicsUniversidad de Murcia2015208Search in Google Scholar

R.H. Cushman, (1984), Normal form for Hamiltonian vectorfields with periodic flow, S. Sternberg (Ed.), Differential Geometric Methods in Mathematical Physics, D. Reidel, Dordrecht (1984), pp. 125-144CushmanR.H.1984Normal form for Hamiltonian vectorfields with periodic flowSternbergS.Differential Geometric Methods in Mathematical PhysicsReidelD.Dordrecht1984125144Search in Google Scholar

K. Efstathiou and D. Sadovskií, (2005), No polar coordinates (R.H. Cushman), in J. Montaldi and T. Ratiu (eds.) Geometric Mechanics and Symmetry: The Peyresq Lectures. Cambridge: Cambridge University Press, pp. 211-302. 10.1017/CBO9780511526367.005EfstathiouK.SadovskiíD.2005No polar coordinates (R.H. Cushman)MontaldiJ.RatiuT.Geometric Mechanics and Symmetry: The Peyresq Lectures. Cambridge: Cambridge University Press21130210.1017/CBO9780511526367.005Open DOISearch in Google Scholar

R.H. Cushman and L. Bates, (1997), Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel. 10.1007/978-3-0348-8891-2CushmanR.H.BatesL.1997Global Aspects of Classical Integrable SystemsBirkhäuser VerlagBasel10.1007/978-3-0348-8891-2Open DOISearch in Google Scholar

R. Cushman, S. Ferrer and H. Hanßmann, (1999), Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillator, Nonlinearity, 12, 389-410. 10.1088/0951-7715/12/2/014CushmanR.FerrerS.HanßmannH.1999Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillatorNonlinearity1238941010.1088/0951-7715/12/2/014Open DOISearch in Google Scholar

R.H. Cushman and D.A. Sadovskií, (2000), Monodromy in the hydrogen atom in crossed fields, Physica D: Nonlinear Phenomena, 142, No 1-2, 166-196. 10.1016/S0167-2789(00)00053-1CushmanR.H.SadovskiíD.A.2000Monodromy in the hydrogen atom in crossed fieldsPhysica D: Nonlinear Phenomena1421-216619610.1016/S0167-2789(00)00053-1Open DOISearch in Google Scholar

A. Deprit, (1967), Free Rotation of a Rigid Body Studied in the Phase Plane, American Journal of Physics, 35, 424-428. 10.1119/1.1974113DepritA.1967Free Rotation of a Rigid Body Studied in the Phase PlaneAmerican Journal of Physics3542442810.1119/1.1974113Open DOISearch in Google Scholar

A. Deprit, (1969), Canonical transformations depending on a small parameter, Celestial mechanics, 1, No 1, 12-30. 10.1007/BF01230629DepritA.1969Canonical transformations depending on a small parameterCelestial mechanics11123010.1007/BF01230629Open DOISearch in Google Scholar

A. Deprit, (1981), The elimination of the parallax in satellite theory, Celestial mechanics, 24, No 2, 111-153. 10.1007/BF01229192DepritA.1981The elimination of the parallax in satellite theoryCelestial mechanics24211115310.1007/BF01229192Open DOISearch in Google Scholar

A. Deprit, (1982), Delaunay normalizations, Celestial mechanics, 26, No 1, 9-21. 10.1007/BF01233178DepritA.1982Delaunay normalizationsCelestial mechanics26192110.1007/BF01233178Open DOISearch in Google Scholar

A. Elipe and A. Deprit, (1999), Oscillators in resonance, Mechanics Research Communications, 26, No 6, 635-640. 10.1016/S0093-6413(99)00072-5ElipeA.DepritA.1999Oscillators in resonanceMechanics Research Communications26663564010.1016/S0093-6413(99)00072-5Open DOISearch in Google Scholar

A. Deprit, (1991), The Lissajous transformation I. Basics, Celestial mechanics, 51, No 3, 201-225. 10.1007/BF00051691DepritA.1991The Lissajous transformation I. BasicsCelestial mechanics51320122510.1007/BF00051691Open DOISearch in Google Scholar

G. Díaz et al., (2009), Generalized Van der Waals 4−D oscillator. Invariant tori and relative equilibria inξ = l = 0 surface, in: Actas de las XI Jornadas de Mecánica Celeste (Ezcaray, Spain, June 25-27, 2008) / Ed. V. Lanchares, A. Elipe. - Zaragoza : Real Academia de Ciencias de Zaragoza, 2009. - (Monografías de la Real Academia de Ciencias de Zaragoza ; 32). - p. 19-37DíazG.2009Generalized Van der Waals 4−D oscillator. Invariant tori and relative equilibria in ξ = l = 0 surface, in: Actas de las XI Jornadas de Mecánica Celeste (Ezcaray, Spain, June 25-27, 2008) / Ed. V. Lanchares, A. Elipe. - Zaragoza : Real Academia de Ciencias de Zaragoza, 2009. - (Monografías de la Real Academia de Ciencias de Zaragoza ; 32).1937Search in Google Scholar

G. Díaz et al., (2010), Relative equilibria and bifurcations in the generalized van der Waals 4D oscillator, Physica D: Nonlinear Phenomena, 239, No 16, 1610-1625. 10.1016/j.physd.2010.04.012DíazG.2010Relative equilibria and bifurcations in the generalized van der Waals 4D oscillatorPhysica D: Nonlinear Phenomena239161610162510.1016/j.physd.2010.04.012Open DOISearch in Google Scholar

K. Efstathiou, R.H. Cushman and D.A. Sadovskií, (2004), Hamiltonian Hopf bifurcation of the hydrogen atom in crossed fields, Physica D: Nonlinear Phenomena, 194, No 3-4, 250-274. 10.1016/j.physd.2004.03.003EfstathiouK.CushmanR.H.SadovskiíD.A.2004Hamiltonian Hopf bifurcation of the hydrogen atom in crossed fieldsPhysica D: Nonlinear Phenomena1943-425027410.1016/j.physd.2004.03.003Open DOISearch in Google Scholar

J. Egea, (2007), Sistemas Hamiltonianos en resonancia 1:1:1:1. Reducciones toroidales y Bifurcaciones de Hopf, Tesis Doctoral, Universidad de Murcia, 180 pp.EgeaJ.2007Sistemas Hamiltonianos en resonancia 1:1:1:1. Reducciones toroidales y Bifurcaciones de HopfTesis Doctoral, Universidad de Murcia180Search in Google Scholar

J. Egea, S. Ferrer and J. V. der Meer, (2007), Hamiltonian fourfold 1:1 resonance with two rotational symmetries, Regular and Chaotic Dynamics, 12, No 6, 664-674. 10.1134/S1560354707060081EgeaJ.FerrerS.der MeerJ. V.2007Hamiltonian fourfold 1:1 resonance with two rotational symmetriesRegular and Chaotic Dynamics12666467410.1134/S1560354707060081Open DOISearch in Google Scholar

A. Elipe and S. Ferrer, (1994), Reductions, relative equilibria, and bifurcations in the generalized van der Waals potential: Relation to the integrable cases, Physical Review Letters, 72, 985-988. 10.1103/PhysRevLett.72.985ElipeA.FerrerS.1994Reductions, relative equilibria, and bifurcations in the generalized van der Waals potential: Relation to the integrable casesPhysical Review Letters7298598810.1103/PhysRevLett.72.98510056588Open DOISearch in Google Scholar

F. Fassò, (2005), Superintegrable Hamiltonian Systems: Geometry and Perturbations, Acta Applicandae Mathematica, 87, No 1, 93-121. 10.1007/s10440-005-1139-8FassòF.2005Superintegrable Hamiltonian Systems: Geometry and PerturbationsActa Applicandae Mathematica8719312110.1007/s10440-005-1139-8Open DOISearch in Google Scholar

S. Ferrer, (2010), The Projective Andoyer transformation and the connection between the 4−D isotropic oscillator and Kepler systems, arXiv:1011.3000v1 [nlin.SI]. 1011.3000v1FerrerS.2010The Projective Andoyer transformation and the connection between the 4−D isotropic oscillator and Kepler systemsarXiv:1011.3000v1 [nlin.SI]1011.3000v1Open DOISearch in Google Scholar

S. Ferrer, J. Palacián and P. Yanguas, (2000), Hamiltonian Oscillators in 1-1-1 Resonance: Normalization and Integrability, Journal of Nonlinear Science, 10, No 2, 145-174. 10.1007/s003329910007FerrerS.PalaciánJ.YanguasP.2000Hamiltonian Oscillators in 1-1-1 Resonance: Normalization and IntegrabilityJournal of Nonlinear Science10214517410.1007/s003329910007Open DOISearch in Google Scholar

S. Ferrer et al., (2002), On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentials, Journal of Geometry and Physics, 40, No 3-4, 320-369. 10.1016/S0393-0440(01)00041-9FerrerS.2002On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentialsJournal of Geometry and Physics403-432036910.1016/S0393-0440(01)00041-9Open DOISearch in Google Scholar

S. Ferrer and F. Crespo, (2014), Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems, The Journal of Geometric Mechanics, 6, No 4, 479-502. 10.3934/jgm.2014.6.479FerrerS.CrespoF.2014Parametric quartic Hamiltonian model. A unified treatment of classic integrable systemsThe Journal of Geometric Mechanics6447950210.3934/jgm.2014.6.479Open DOISearch in Google Scholar

S. Ferrer and M. Lara, (2010), Families of canonical transformations by Hamilton-Jacobi-Poincaré’ equation. Application to rotational and orbital motion, The Journal of Geometric Mechanics, 2, No 3, 223-241. 10.3934/jgm.2010.2.223FerrerS.LaraM.2010Families of canonical transformations by Hamilton-Jacobi-Poincaré’ equation. Application to rotational and orbital motionThe Journal of Geometric Mechanics2322324110.3934/jgm.2010.2.223Open DOISearch in Google Scholar

M. Iñarrea et al., (2004), The Keplerian regime of charged particles in planetary magnetospheres, Physica D: Nonlinear Phenomena, 197, No 3-4, 242-268. 10.1016/j.physd.2004.07.009IñarreaM.2004The Keplerian regime of charged particles in planetary magnetospheresPhysica D: Nonlinear Phenomena1973-424226810.1016/j.physd.2004.07.009Open DOISearch in Google Scholar

P. Kustaanheimo and E.L. Stiefel, (1965), Perturbation theory of Kepler motion based on spinor regularization, Journal für die reine und angewandte Mathematik (Crelles Journal), 218, 204-219. 10.1515/crll.1965.218.204KustaanheimoP.StiefelE.L.1965Perturbation theory of Kepler motion based on spinor regularizationJournal für die reine und angewandte Mathematik (Crelles Journal)21820421910.1515/crll.1965.218.204Open DOISearch in Google Scholar

S. Mayer, J. Scheurle and S. Walcher, (2004), Practical normal form computations for vector fields, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 84, No 7, 472-482. 10.1002/zamm.200310115MayerS.ScheurleJ.WalcherS.2004Practical normal form computations for vector fieldsZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik84747248210.1002/zamm.200310115Open DOISearch in Google Scholar

K. R. Meyer, G. R. Hall and D. Offin, (2009), Introduction to Hamiltonian Dynamical Systems and the NBody Problem, Springer-Verlag, New York. 10.1007/978-0-387-09724-4MeyerK. R.HallG. R.OffinD.2009Introduction to Hamiltonian Dynamical Systems and the N−Body ProblemSpringer-VerlagNew York10.1007/978-0-387-09724-4Open DOISearch in Google Scholar

J. Moser and E. J. Zehnder, (2005), Notes on Dynamical Systems, Courant Lecture Notes Vol. 12, AMS and the Courant Institute of Mathematical Sciences at New York University.MoserJ.ZehnderE. J.2005Notes on Dynamical SystemsCourant Lecture Notes Vol. 12, AMS and the Courant Institute of Mathematical Sciences at New York University10.1090/cln/012Search in Google Scholar

N. N. Nehorošev, (1972), Action-angle variables, and their generalizations, Tr. Mosk. Mat. Obs., 26, MSU, M., 181-198.NehoroševN. N.1972Action-angle variables, and their generalizationsTr. Mosk. Mat. Obs., 26, MSU, M.181198Search in Google Scholar

G. Reeb, (1952), Sur certaines propriétés topologiques des variétés feuilletées, Acad. Roy. Belgique. Cl. Sci. Mém. Coll. in 8, 27.ReebG.1952Sur certaines propriétés topologiques des variétés feuilletéesAcad. Roy. Belgique. Cl. Sci. Mém. Coll827Search in Google Scholar

J.A. Sanders, F. Verhulst and J. Murdock, (2007), Averaging Methods in Nonlinear Dynamical Systems, Vol. 59, Springer New York, New York. 10.1007/978-0-387-48918-6SandersJ.A.VerhulstF.MurdockJ.2007Averaging Methods in Nonlinear Dynamical Systems59Springer New YorkNew York10.1007/978-0-387-48918-6Open DOISearch in Google Scholar

P. Yanguas et al., (2008), Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem, SIAM Journal on Applied Dynamical Systems 7, No 2, 311-340. 10.1137/070696453YanguasP.2008Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar ProblemSIAM Journal on Applied Dynamical Systems7231134010.1137/070696453Open DOISearch in Google Scholar

J.C. van der Meer, (2015), The Kepler system as a reduced 4D harmonic oscillator, Journal of Geometry and Physics, 92, 181-193. 10.1016/j.geomphys.2015.02.016van der MeerJ.C.2015The Kepler system as a reduced 4D harmonic oscillatorJournal of Geometry and Physics9218119310.1016/j.geomphys.2015.02.016Open DOISearch in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics