Open Access

Multiplier method and exact solutions for a density dependent reaction-diffusion equation


Cite

Ablowitz, M.J., Zeppetella, A. (1979), Explicit solutions of Fisher’s equation for a special wave speed. Bull. Math. Biol, 41: 835-840.10.1007/BF02462380AblowitzM.J.ZeppetellaA.1979Explicit solutions of Fisher’s equation for a special wave speedBull. Math. Biol41835840Open DOISearch in Google Scholar

de la Rosa, R. and Bruzón, M.S. (2016), On the classical and nonclassical symmetries of a generalized Gardner equation. Applied Mathematics and Nonlinear Sciences, 1(1): 263-272. 10.21042/AMNS.2016.1.00021de la RosaR.BruzónM.S.2016On the classical and nonclassical symmetries of a generalized Gardner equationApplied Mathematics and Nonlinear Sciences1126327210.21042/AMNS.2016.1.00021Open DOISearch in Google Scholar

Adem, K.R. and Khalique, C.M. (2015), Symmetry Analysis and Conservation Laws of a Generalized Two-Dimensional Nonlinear KP-MEW Equation. Mathematical Problems in Engineering, Volume 2015, Article ID 805763, 10.1155/2015/805763AdemK.R.KhaliqueC.M.2015Symmetry Analysis and Conservation Laws of a Generalized Two-Dimensional Nonlinear KP-MEW EquationMathematical Problems in Engineering2015Article ID 80576310.1155/2015/805763Open DOISearch in Google Scholar

Anco, S.C., Bluman G. (2002), Direct construction method for conservation laws for partial differential equations Part II: General treatment Euro. Jnl of Applied mathematics, 41: 567-585. 10.1017/S095679250100465XAncoS.C.BlumanG.2002Direct construction method for conservation laws for partial differential equations Part II: General treatment EuroJnl of Applied mathematics4156758510.1017/S095679250100465XOpen DOISearch in Google Scholar

Belmonte-Beitia, J., Calvo, G.F., Pérez-García, V.M. (2014), Effective particle methods for the Fisher-Kolmogorov equations: Theory and applications to brain tumor dynamics. Communications in Nonlinear Science and Numerical Simulation 19: 3267-3283. 10.1016/j.cnsns.2014.02.004Belmonte-BeitiaJ.CalvoG.F.Pérez-GarcíaV.M.2014Effective particle methods for the Fisher-Kolmogorov equations: Theory and applications to brain tumor dynamicsCommunications in Nonlinear Science and Numerical Simulation193267328310.1016/j.cnsns.2014.02.004Open DOISearch in Google Scholar

Bokhari, A.H., Mustafà M.T., Zaman F.D. (2008) An exact solution of a quasilinear Fisher equation in cylindrical coordinates. Nonlinear Analysis 69: 4803–4805. 10.1016/j.na.2007.11.012BokhariA.H.MustafàM.T.ZamanF.D.2008An exact solution of a quasilinear Fisher equation in cylindrical coordinatesNonlinear Analysis694803480510.1016/j.na.2007.11.012Open DOISearch in Google Scholar

Britton, N.F. (1989), Aggregation and the competitive exclusion principle. J. Theor. Biol. 136: 57-66.10.1016/S0022-5193(89)80189-42779260BrittonN.F.1989Aggregation and the competitive exclusion principleJ. Theor. Biol.1365766Open DOISearch in Google Scholar

Cherniha, R., Serov, M., Rassokha, I. (208), Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations, J.Math. Anal. Appl. 342: 136-1379.ChernihaR.SerovM.RassokhaI.208Lie symmetries and form-preserving transformations of reaction-diffusion-convection equationsJ. Math. Anal. Appl.342136137910.1016/j.jmaa.2008.01.011Search in Google Scholar

Clarkson, P. A., Mansfield E. L. (1993) Symmetry reductions and exact solutions of a class of nonlinear heat equations. Physica D 70: 250–288.ClarksonP. A.MansfieldE. L.1993Symmetry reductions and exact solutions of a class of nonlinear heat equationsPhysica D7025028810.1016/0167-2789(94)90017-5Search in Google Scholar

Bruzón, M.S., Gandarias, M.L., de la Rosa, R. (2014) Conservation laws of a family of reaction-diffusion-convection equations, Localized Excitations in Nonlinear Complex Systems, Series: Nonlinear Systems and Complexity 7: 403-417 ISBN: 978-3-319-02057-0BruzónM.S.GandariasM.L.de la RosaR.2014Conservation laws of a family of reaction-diffusion-convection equations, Localized Excitations in Nonlinear Complex SystemsSeries: Nonlinear Systems and Complexity7403417ISBN: 978-3-319-02057-010.1007/978-3-319-02057-0_21Search in Google Scholar

Euler, N. and Euler, M. (2009), On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachies, Journal of Nonlinear Mathematical Physics 6: 489–504.EulerN.EulerM.2009On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierachiesJournal of Nonlinear Mathematical Physics648950410.1142/S1402925109000509Search in Google Scholar

Fisher, R.A. (1937), The wave of advance of advantageous genes. Ann.Eugenics 7: 353-69.FisherR.A.1937The wave of advance of advantageous genesAnn.Eugenics73536910.1111/j.1469-1809.1937.tb02153.xSearch in Google Scholar

Gandarias, M.L. and Khalique, C.M. (2016), Symmetries solutions and conservation laws of a class of nonlinear dispersive wave equations. Communications in Nonlinear Science and Numerical Simulation 32: 114-121. 10.1016/j.cnsns.2015.07.010GandariasM.L.KhaliqueC.M.2016Symmetries solutions and conservation laws of a class of nonlinear dispersive wave equationsCommunications in Nonlinear Science and Numerical Simulation3211412110.1016/j.cnsns.2015.07.010Open DOISearch in Google Scholar

Gandarias, M.L., Bruzón, M.S., and Rosa M. (2015), Symmetries and Conservation Laws for Some Compacton Equation. Mathematical Problems in Engineering, Volume 2015, Article ID 430823, 10.1155/2015/430823GandariasM.L.BruzónM.S.RosaM.2015Symmetries and Conservation Laws for Some Compacton EquationMathematical Problems in Engineering2015Article ID 43082310.1155/2015/430823Open DOISearch in Google Scholar

Gandarias, M.L., Bruzón, M.S., Rosa M. (2013), Nonlinear self-adjointness and conservation laws for a generalized Fisher equation. Commun. Nonlinear Sci. Numer. Simulat. 18: 1600-1606. 10.1016/j.cnsns.2012.11.023GandariasM.L.BruzónM.S.RosaM.2013Nonlinear self-adjointness and conservation laws for a generalized Fisher equationCommun. Nonlinear Sci. Numer. Simulat.181600160610.1016/j.cnsns.2012.11.023Open DOISearch in Google Scholar

Fitzhugh, R. (1961), Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1: 445-66.1943130910.1016/S0006-3495(61)86902-6FitzhughR.1961Impulses and physiological states in theoretical models of nerve membraneBiophys J144566Search in Google Scholar

Ibragimov, N. H. (2007), A new conservation theorem J. Math. Anal. Appl. 333: 311-28. 10.1016/j.jmaa.2006.10.078IbragimovN. H.2007A new conservation theoremJ. Math. Anal. Appl.3333112810.1016/j.jmaa.2006.10.078Open DOISearch in Google Scholar

Kudryashov, N.A. (2009), On “new travelling wave solutions” of the KdV and the KdV-Burgers equations. Commun. Nonl. Sci. Numer. Simulat, 14 1891-1900.10.1016/j.cnsns.2008.09.020KudryashovN.A.2009On “new travelling wave solutions” of the KdV and the KdV-Burgers equationsCommun. Nonl. Sci. Numer. Simulat1418911900Open DOISearch in Google Scholar

Murray, J.D. (2002), Mathematical Biology. Third Edition. Springer-Verlag New York Berlin Heidelberg.MurrayJ.D.2002Mathematical BiologyThirdSpringer-VerlagNew York Berlin Heidelberg10.1007/b98868Search in Google Scholar

Nagumo, J.S., Arimoto, S., Yoshizawa, S. (1962), An active pulse trasmission line simulating nerve axon Proc IRE 50: 2061-71.NagumoJ.S.ArimotoS.YoshizawaS.1962An active pulse trasmission line simulating nerve axon Proc IRE5020617110.1109/JRPROC.1962.288235Search in Google Scholar

Olver, P.J.(1986), Applications of Lie Groups to Differential Equations. Springer, Berlin.OlverP.J.1986Applications of Lie Groups to Differential Equations.SpringerBerlin10.1007/978-1-4684-0274-2Search in Google Scholar

Rosa, M., Bruzon, M.S., Gandarias, M.L. (2015) Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates. Commun Nonlinear Sci Numer Simulat, 25, 74–83. 10.1016/j.cnsns.2015.01.010RosaM.BruzonM.S.GandariasM.L.2015Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinatesCommun Nonlinear Sci Numer Simulat25748310.1016/j.cnsns.2015.01.010Open DOISearch in Google Scholar

Swanson, K. R., Bridgea, C., Murray, J.D., Ellsworth, C., Alvord, Jr. (2003), Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. Journal of the Neurological Sciences, 216: 1–10.10.1016/j.jns.2003.06.00114607296SwansonK. R.BridgeaC.MurrayJ.D.EllsworthC.AlvordJr.2003Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasionJournal of the Neurological Sciences216110Open DOISearch in Google Scholar

Tracinà, R., Bruzón. M. S. and Gandarias, M. L. (2016), On the nonlinear self-adjointness of a class of fourth-order evolution equations. Applied Mathematics and Computation 275: 299-304. 10.1016/j.amc.2015.11.079TracinàR.Bruzón.M. S.GandariasM. L.2016On the nonlinear self-adjointness of a class of fourth-order evolution equationsApplied Mathematics and Computation27529930410.1016/j.amc.2015.11.079Open DOISearch in Google Scholar

Tracinà, R., Freire, I. L. and Torrisi, M. (2016), Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. Communications in Nonlinear Science and Numerical Simulation, 32: 225-233. 10.1016/j.cnsns.2015.08.016TracinàR.FreireI. L.TorrisiM.2016Nonlinear self-adjointness of a class of third order nonlinear dispersive equationsCommunications in Nonlinear Science and Numerical Simulation3222523310.1016/j.cnsns.2015.08.016Open DOISearch in Google Scholar

Wang, N., Li, X. and Zhang, J. (2008), The GG $\begin{array}{} \frac{G'}{G} \end{array}$ -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372: 417.10.1016/j.physleta.2007.07.051WangN.LiX.ZhangJ.2008The GG $\begin{array}{}\frac{G'}{G}\end{array}$ -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physicsPhys. Lett. A372417Open DOISearch in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics