Open Access

Computation of the fifth Geometric-Arithmetic Index for Polycyclic Aromatic Hydrocarbons PAHk


Cite

Introduction

Let G(V, E) be a simple connected graph, where V and E represent the set of vertices and the set of edges, respectively. The number of elements in V and E are called the order and the size of the graph G, respectively. The distance between the vertices u and ν is the length of the shortest path connecting them. The maximum distance between u and any other vertex of the graph G is called eccentricity of u. For a vertex νV, the number of vertices attached to ν is called the degree of the vertex ν. It is denoted as d(ν). The notation Sν is the summation of degrees of all neighbors of vertex ν in G, i.e. Sν = ΣuvE(G)d(u). More details about the standard notations from the graph theory in the paper can refer to [1]–[3].

A topological index is a function (TI) from the set of finite simple graphs to the set of real numbers, with the property that TI(G) = TI(H) if both the graph G and H are isomorphic. There are hundreds of topological indices being introduced. M. Randic [4] introduced the first degree based topological index named as Randic index. The Randic index of a graph G is defined as

R(G)=uνE(G)1d(u)d(ν).$$\begin{array}{} \displaystyle R(G) = \sum\limits_{u\nu \in E(G)} {\frac{1}{{\sqrt {d(u)d(\nu)} }}} . \end{array}$$

A widely used connectivity topological index is geometric-arithmetic index (GA) introduced by Vukicevic [5] and it can be defined as

GA1(G)=uνE(G)2d(u)d(ν)d(u)+d(ν).$$\begin{array}{} \displaystyle G{A_1}\left( G \right) = \sum\limits_{u\nu \in E(G)} {\frac{{2\sqrt {d(u)d(\nu)} }}{{d(u) + d(\nu)}}} . \end{array}$$

The second member of this family of index was introduced by Fath-Tabar [6]

GA2(G)=uνE(G)2nνnunν+nu,$$\begin{array}{} \displaystyle G{A_2}\left( G \right) = \sum\limits_{u\nu \in E(G)} {\frac{{2\sqrt {{n_\nu}{n_u}} }}{{{n_\nu} + {n_u}}}} , \end{array}$$

where nu is the number of vertices of graph G lying closer to the vertex u than that to the vertex ν for the edge uvE(G).

Bo-Zhou [7] proposed the third geometric-arithmetic index of a graph G

GA3(G)=uνE(G)2mνmumν+mu,$$\begin{array}{} \displaystyle G{A_3}\left( G \right) = \sum\limits_{u\nu \in E(G)} {\frac{{2\sqrt {{m_\nu}{m_u}} }}{{{m_\nu} + {m_u}}}} , \end{array}$$

where mu is the number of edges of graph G lying closer to the vertex u than that to the vertex ν for the edge uvE(G).

The fourth geometric-arithmetic index was proposed by Ghorbani [8]. This index is defined as

GA4(G)=uνE(G)2ενεuεν+εu,$$\begin{array}{} \displaystyle G{A_4}\left( G \right) = \sum\limits_{u\nu \in E(G)} {\frac{{2\sqrt {{\varepsilon _\nu}{\varepsilon _u}} }}{{{\varepsilon _\nu} + {\varepsilon _u}}}} , \end{array}$$

where εu is the number of eccentricity of vertex u.

Recently, Graovac [9] defined the fifth version of geometric-arithmetic index as

GA5(G)=uνE(G)2SνSuSν+Su.$$\begin{array}{} \displaystyle G{A_5}\left( G \right) = \sum\limits_{u\nu \in E(G)} {\frac{{2\sqrt {{S_\nu}{S_u}} }}{{{S_\nu} + {S_u}}}} . \end{array}$$

For history and further results on this family of topological indices, please refer to [10]- [16].

Chemical graph theory is the branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena. This theory has vital effect on the development of the chemical sciences.

Polycyclic Aromatic Hydrocarbons PAHk are obtained from the burning of organic material, and naturally as a result of thermal geological reaction. For many years, they attracted much attention, because some of them are strong carcinogens. The Polycyclic Aromatic Hydrocarbons consist of several copies of benzene on circumference. The first three members of this family are shown in Figure 1. For further details, please refer to [17]–[43].

Fig. 1

The first three members of Polycyclic Aromatic Hydrocarbons family PAHk.

In this paper, we compute the fifth geometric-arithmetic index of Polycyclic Aromatic Hydrocarbons.

Computation Techniques and Main Results

In this section, we computed the fifth version of Polycyclic Aromatic Hydrocarbon (PAHk).

Theorem 1

Consider the graph of Polycyclic Aromatic Hydrocarbons (PAHk), then the fifth geometric-arithmetic index of Polycyclic Aromatic Hydrocarbon is equal to

GA5(PAHk)=9k2+k(6215+97215)+(12972).$$\begin{array}{} \displaystyle G{A_5}(PA{H_k}) = 9{k^2} + k\left( {6\frac{{\sqrt {21} }}{5} + \frac{{9\sqrt 7 }}{2} - 15} \right) + \left( {12 - \frac{{9\sqrt 7 }}{2}} \right). \end{array}$$

Proof. A graphical representation of Polycyclic Aromatic Hydrocarbons is shown in Figure 2. It contains 6k2 + 6k vertices and 9k2 + 3k edges. In this structure, there are two types of vertices, vertices with degree 1 and degree 3. We denote the sets of vertices with degree 1 as V1 = {νV(G)|dν = 1} and degree 3 as V3 = {νV(G)|dν = 3}. On the basis of degrees of the vertices we divide the edge set into a partition E4 = {uvE(PAHk)|du + dν = 4}, E6 = {uvE(PAHk)|du + dν = 6} and |E4|=6k, |E6|=9k2-3k.

Fig. 2

General representation of Polycyclic Aromatic Hydrocarbons (PAHk).

The sum of degrees of vertices for each edge of PAHk is represented as follows:

There are k edges e= for which, Su = 3, Sν = 7 when uV1, νV3 and E6.

There are 6 edges e = for which, Su = Sν = 7 when u,νV6 and uν ∈ E6.

There are 9k2 − 15k + 6 edges e = for which, Su = Sν = 9 when u,νV3 and E6.

Now, we apply these calculations to the definition of the fifth geometric-arithmetic index which can be demonstrated as follows,

GA5(PAHk)=e=uvE(Hk)2S(ν)S(u)S(ν)+S(u)$\begin{array}{} G{A_5}(PA{H_k}) = {\sum\nolimits _{{\rm{e}} = {\rm{u\nu}} \in E({H_k})}}\frac{{2\sqrt {S\left( \nu \right)S\left( u \right)} }}{{S\left( \nu \right) + S\left( u \right)}} \end{array}$

=6k23×73+7+627×77+7+12(k1)27×97+9+(9k215k+6)29×99+9=6k215+6+(k1)972+(9k215k+6)=9k2+k(6215+97215)+(12972)$$\begin{array}{} \displaystyle \begin{array}{*{20}{l}} { = 6k\frac{{2\sqrt {3 \times 7} }}{{3 + 7}} + 6\frac{{2\sqrt {7 \times 7} }}{{7 + 7}} + 12\left( {k - 1} \right)\frac{{2\sqrt {7 \times 9} }}{{7 + 9}} + (9{k^2} - 15k + 6)\frac{{2\sqrt {9 \times 9} }}{{9 + 9}}}\\ { = 6k\frac{{\sqrt {21} }}{5} + 6 + \left( {k - 1} \right)\frac{{9\sqrt 7 }}{2} + (9{k^2} - 15k + 6)}\\ { = 9{k^2} + k\left( {6\frac{{\sqrt {21} }}{5} + \frac{{9\sqrt 7 }}{2} - 15} \right) + \left( {12 - \frac{{9\sqrt 7 }}{2}} \right)} \end{array} \end{array}$$

which is the required result.

Example 2

The reader can find some values of the fifth geometric-arithmetic index of Polycyclic Aromatic Hydrocarbons (PAHk) for integer k = 1, 2, 3,..., 1012in following table.

Corollary 3

Consider the molecular graph Polycyclic Aromatic Hydrocarbons (PAHk) shown in Figure 1, thus Theorem 1 and Table 1 imply that for enough large integer number k, the approach fifth geometric-arithmetic index of PAHk is equal to

Computing GA5 index for Polycyclic Aromatic Hydrocarbons PAHk (∀k = 1,2,3,...,1012):

GA5(PAH1)11.4991
GA5(PAH2)40.9041
GA5(PAH3)88.3091
GA5(PAH4)153.7141
GA5(PAH5)237.1191
GA5(PAH6)338.5241
GA5(PAH7)457.9291
GA5(PAH8)595.3341
GA5(PAH9)750.7391
GA5(PAH10)924.1441
GA5(PAH20)3648.1941
GA5(PAH30)8172.2441
GA5(PAH40)14496.2941
GA5(PAH50)22620.3441
GA5(PAH60)32544.3941
GA5(PAH70)44268.4441
GA5(PAH80)57792.4941
GA5(PAH90)73116.5441
GA5(PAH100)90240.5941
GA5(PAH200)360481.0941
GA5(PAH300)810721.5941
GA5(PAH400)1440962.0941
GA5(PAH500)2251202.5941
GA5(PAH600)3241443.0941
GA5(PAH700)4411683.5941
GA5(PAH800)5761924.0941
GA5(PAH900)7292164.5941
GA5(PAH1000)9002405.0941
GA5(PAH2000)36004810.0941
GA5(PAH3000)81007215.0941
GA5(PAH4000)144009620.0941
GA5(PAH5000)225012025.0941
GA5(PAH6000)324014430.0941
GA5(PAH7000)441016835.0941
GA5(PAH8000)576019240.0941
GA5(PAH9000)729021645.0941
GA5(PAH10000)900024050.0941
GA5(PAH20000)3600048100.0941
GA5(PAH30000)8100072150.0941
GA5(PAH40000)14400096200.0941
GA5(PAH50000)22500120250.0941
GA5(PAH60000)32400144300.0941
GA5(PAH70000)44100168350.0941
GA5(PAH80000)57600192400.0941
GA5(PAH90000)72900216450.0941
GA5(PAH100000)90000240500.0941
GA5(PAH200000)360000481000.094
GA5(PAH300000)810000721500.094
GA5(PAH400000)1440000962000.09
GA5(PAH500000)2250001202500.09
GA5(PAH600000)3240001443000.09
GA5(PAH700000)4410001683500.09
GA5(PAH800000)5760001924000.09
GA5(PAH900000)7290002164500.09
GA5(PAH1000000)9000002405000.09
GA5(PAH2000000)36000004810000.1
GA5(PAH3000000)81000007215000.1
GA5(PAH4000000)144000009620000
GA5(PAH5000000)225000012025000
GA5(PAH6000000)324000014430000
GA5(PAH7000000)441000016835000
GA5(PAH8000000)576000019240000
GA5(PAH9000000)729000021645000
GA5(PAH10000000)900000024050000
GA5(PAH20000000)3.6000000481 × 1015
GA5(PAH30000000)8.10000007215 × 1015
GA5(PAH40000000)1.44000000962 × 1016
GA5(PAH50000000)2.250000012025 × 1016
GA5(PAH60000000)3.24000001443 × 1016
GA5(PAH70000000)4.410000016835 × 1016
GA5(PAH80000000)5.76000001924 × 1016
GA5(PAH90000000)7.290000021645 × 1016
GA5(PAH100000000)9.00000002405 × 1016
GA5(PAH200000000)3.60000000481 × 1017
GA5(PAH300000000)8.100000007215 × 1017
GA5(PAH400000000)1.440000000962 × 1018
GA5(PAH500000000)2.2500000012025 × 1018
GA5(PAH600000000)3.240000001443 × 1018
GA5(PAH700000000)4.4100000016835 × 1018
GA5(PAH800000000)5.760000001924 × 1018
GA5(PAH900000000)7.2900000021645 × 1018
GA5(PAH1000000000)9.000000002405 × 1018
GA5(PAH2000000000)3.600000000481 × 1019
GA5(PAH3000000000)8.1000000007215 × 1019
GA5(PAH4000000000)1.4400000000962 × 1020
GA5(PAH5000000000)2.25000000012025 × 1020
GA5(PAH6000000000)3.2400000001443 × 1020
GA5(PAH7000000000)4.41000000016835 × 1020
GA5(PAH8000000000)5.7600000001924 × 1020
GA5(PAH9000000000)7.29000000021645 × 1020
GA5(PAH10000000000)9.0000000002405 × 1020
GA5(PAH20000000000)3.6000000000481 × 1021
GA5(PAH30000000000)8.10000000007215 × 1021
GA5(PAH40000000000)1.44000000000962 × 1022
GA5(PAH50000000000)2.25000000001202 × 1022
GA5(PAH60000000000)3.24000000001443 × 1022
GA5(PAH70000000000)4.41000000001683 × 1022
GA5(PAH80000000000)5.76000000001924 × 1022
GA5(PAH90000000000)7.29000000002165 × 1022
GA5(PAH100000000000)9.00000000002405 × 1022
GA5(PAH200000000000)3.60000000000481 × 1023
GA5(PAH300000000000)8.10000000000721 × 1023
GA5(PAH400000000000)1.44000000000096 × 1024
GA5(PAH500000000000)2.2500000000012 × 1024
GA5(PAH600000000000)3.24000000000144 × 1024
GA5(PAH700000000000)4.41000000000168 × 1024
GA5(PAH800000000000)5.76000000000192 × 1024
GA5(PAH900000000000)7.29000000000217 × 1024
GA5(PAH1000000000000)9.0000000000024 × 1024
GA5(PAH2000000000000)3.60000000000048 × 1025
GA5(PAH3000000000000)8.10000000000072 × 1025
GA5(PAH4000000000000)1.4400000000001 × 1026
GA5(PAH5000000000000)2.25000000000012 × 1026
GA5(PAH6000000000000)3.24000000000014 × 1026
GA5(PAH7000000000000)4.41000000000017 × 1026
GA5(PAH8000000000000)5.76000000000019 × 1026
GA5(PAH9000000000000)7.29000000000022 × 1026
GA5(PAH10000000000000)9.00000000000024 × 1026

GA5(PAHk^)=9k2.$$\begin{array}{} \displaystyle G{A_5}(\widehat {PA{H_k}}) = 9{k^2}. \end{array}$$

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics