Open Access

Boundary value problems for fractional differential equation with causal operators


Cite

Introduction

In this paper, we consider the following two-point boundary value problem :

{Dαcu(t)=(Qu)(t),tJ=[0,T],g(u(0),u(T))=0,$$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {{}_{}^c{D^\alpha }u(t) = (Qu)(t),t \in J = [0,T],} \hfill \\ {g(u(0),u(T)) = 0,} \hfill \\ \end{array}} \right. \end{array}$$

where cDα is the Caputo fractional derivative with 0 < α ≤ 1, Q is a causal operator.

Fractional differential equation have proved to be valuable tools in modeling many phenomena in various fields of engineering, physics and economics, it draws a great application in nonlinear oscillations of earthquakes, seepage flow in porous media, fluid dynamics traffic model, to name but a few. Fractional differential equations have been studied extensively in recently years, for more details,one can see the monographs of [1, 2, 7, 11], and the journal literatures [13, 18, 2022, 2426]. In these previous works, Cauchy problems,optimal control problems,Numerical methods and the existence and uniquencess of solutions for various classes of initial and boundary value problems for fractional differential equations are discussed.

On the other hand, causal operators is adopted from the engineering literature and the theory of these operators has the powerful quality of unifying ordinary differential equations, integrodifferential equation, differential equations with finite and infinite delay, Volterra integral equations,neutral differential equations and so on. Recently, functional equations with causal operators are discussed (such as the monographs of [3, 4],and the research papers of [8, 27]). Fractional differential equations with causal operator in Banach spaces also have been studied (one can see [6, 9, 12, 28, 29],). the boundary value problems for integer order differential equation with causal operators have been concerned in [5].

As far as the authors are aware, the boundary value problems for fractional functional differential equations ( in form of Caputo derivative) with causal operator in infinite dimensional spaces have not been studied, it is just our interest in this paper. To get approximate solutions of (1), we can apply the monotone iterative technique,which has been investigated extensively, for detailed see [5,10,1416]. The rest of this paper is organized as follows. In sect.2, Some notations and preparation results are given, some lemmas which are essential parts of the proof of our main results are proved by Schauder’s fixed point theorem. Sectt113.3 is devoted to obtain the main results by monotone iterative technique and upper and lower solutions method to the extremal solutions and quasisolutions of the differential equation. At last, an examples is given to demonstrate the validity of assumptions and theoretical results in sect.4.

Preliminaries

We introduce some preliminaries which are used throughout the paper in this section. Let E = C(J, ℝ) be the space of all continuous functions x : J → ℝ with J = [0, T]. QC(E,E) is said to be a causal operator, or nonanticipative if the following property is satisfied: for each couple of elements x,y of E such that x(s) = y(s) for 0 ≤ st, we also have (Qx)(s) = (Qy)(s) for 0 ≤ st, t < T ; for details see [7].

Definition 1

The Riemann-Liouville derivative of order α with the lower limit t0 for a function f : [t0, ∞) → R can be written as

LDαf(t)=1Γ(nα)dndtnt0tf(s)(ts)1+αnds, t>t0, n1<α<n.$$\begin{array}{} \displaystyle ^L{D^\alpha }f(t) = \frac{1}{{\Gamma (n - \alpha )}}\frac{{{d^n}}}{{d{t^n}}}\smallint _{{t_0}}^t\frac{{f(s)}}{{{{(t - s)}^{1 + \alpha - n}}}}ds,\;t > {t_0},\;n - 1 < \alpha < n. \end{array}$$

Definition 2

The Caputo derivative of order α for a function f : [t0, ∞) → R can be written as

cDαf(t)=LDα[f(t)k=0n1(tt0)kk!f(k)(t0)], t>t0, n1<α<n.$$\begin{array}{} \displaystyle ^c{D^\alpha }f(t){ = ^L}{D^\alpha }[f(t) - \mathop \sum \limits_{k = 0}^{n - 1} \frac{{{{(t - {t_0})}^k}}}{{k!}}{f^{(k)}}({t_0})],\;t > {t_0},\;n - 1 < \alpha < n. \end{array}$$

Lemma 1

[1] Let R(α) > 0 and let n be given by n = [R(α)]+1 for aN0, α = n for αN0. If y(x) ∊ Cn[a,b], then

(Ia+α Dcαy)(x)=y(x)k=0n1y(k)(a)k!(xa)k,$$\begin{array}{} \displaystyle (I_{a + }^\alpha \;{}_{}^c{D^\alpha }y)(x) = y(x) - \mathop \sum \limits_{k = 0}^{n - 1} \frac{{{y^{(k)}}(a)}}{{k!}}{(x - a)^k}, \end{array}$$

in particular, if 0 < R(α) ≤ 1 and y(x) ∊ C1[a,b], then

(Ia+α Dcαy)(x)=y(x)y(a).$$\begin{array}{} \displaystyle (I_{a + }^\alpha \;{}_{}^c{D^\alpha }y)(x) = y(x) - y(a). \end{array}$$

Lemma 2

[1]. Let R(α) ≥ 0 and let n be given by n = [R(α)]+1 for aN0, α = n for αN0. If y(x) ∊ Cn[a,b], then the Caputo fractional derivativecDaαy(x)$\begin{array}{} ^cD_a^\alpha y(x) \end{array}$is continuous on [a,b].

(a) If αN0, then

cDaαy(x)=1Γ(nα)ax(xt)nα1y(n)(t)dt=:(Ia+nαDny)(x),$$\begin{array}{} \displaystyle ^cD_a^\alpha y(x) = \frac{1}{{\Gamma (n - \alpha )}}\int_a^x {{{(x - t)}^{n - \alpha - 1}}} {y^{(n)}}(t)dt = :(I_{a + }^{n - \alpha }{D^n}y)(x), \end{array}$$

where D = d/dx, in particular, if 0 < R(α) < 1 and y(x) ∊ C1[a,b], then

cDaαy(x)=:(Ia+1αDy)(x).$$\begin{array}{} \displaystyle ^cD_a^\alpha y(x) = :(I_{a + }^{1 - \alpha }Dy)(x). \end{array}$$

(b) If a = nN0, then the fractional derivativecDany(x)=y(n)(x)$\begin{array}{} ^cD_a^ny(x) = {y^{(n)}}(x) \end{array}$. In particular,

cDa0y(x)=y(x).$$\begin{array}{} \displaystyle ^cD_a^0y(x) = y(x). \end{array}$$

It is necessary to state the Schauder’s fixed point theorem which would be used in the proof of lemmas.

Theorem 3

[4]. Let E be a Banach space and BE be a convex, closed bounded set. If T : EE is a continuous operator such that T BB and T is relatively compact, then T has a fixed point.

Let us recall the definition of a solution of the fractional BVP (1).

Definition 3

A function yC1(J,ℝ) is said to be a solution of the fractional BVP(1.1) if y satisfies:

(i) cDay(t) = (Qy)(t) a.e. on J,

(ii) g(y(0),y(T)) = 0.

We prove the following differential inequalities with positive linear operator L which are important in obtaining our main results.

Lemma 4

Assume that LC(E,E) is a positive linear operator. Let mC1(J, ℝ) satisfy:

{cDαm(t)(Lm)(t),tJ,m(0)rm(T),r[0,1]$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }m(t) \le - (Lm)(t),}&{t \in J,}\\ {m(0) \le rm(T),}&{r \in [0,1]} \end{array}\right. \end{array}$$

and the condition holds

suptJ{1Γ(α)0t(ts)α1(L1)(s)ds}1,$$\begin{array}{} \displaystyle \mathop {\sup }\limits_{t \in J} \{ \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} (L{\bf{1}})(s)ds\} \le 1, \end{array}$$

where1(t) = 1, tJ. Then m(t) ≤ 0, tJ.

Proof. Case 1. Suppose m(0) ≤ 0. We need to show that m(t) ≤ 0, tJ. Moreover, if r = 0, then m(0) ≤ 0. Assume the above inequality is not true. Then, there exists t0 ∊ (0,T] such that m(t0) > 0. Let

m(t1)=min[0,t0]m(t)0.$$\begin{array}{} \displaystyle m({t_1}) = \mathop {\min }\limits_{[0,{t_0}]} m(t) \le 0. \end{array}$$

Applying the fractional integration operator It1+α$\begin{array}{} \displaystyle I_{{t_1} + }^\alpha \end{array}$ to the both sides of the differential inequality in (2), we can get

It1+α(cDαm(t))It1+α(Lm)(t),$$\begin{array}{} \displaystyle I_{{t_1} + }^\alpha {(^c}{D^\alpha }m(t)) \le - I_{{t_1} + }^\alpha (Lm)(t), \end{array}$$

thus, by Lemma 1 and the condition (3), we have

m(t0)m(t1)1Γ(α)t1t0(t0s)α1(Lm)(s)dsm(t1)Γ(α)t1t0(t0s)α1(L1)(s)dsm(t1).$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {m\left( {{t_0}} \right) - m\left( {{t_1}} \right)} \hfill & \le \hfill & { - \frac{1}{{{\rm{\Gamma }}(\alpha )}}\int_{{t_1}}^{{t_0}} {{{({t_0} - s)}^{\alpha - 1}}(Lm)(s)ds} } \hfill \\ {} \hfill & \le \hfill & { - \frac{{m({t_1})}}{{{\rm{\Gamma }}(\alpha )}}\int_{{t_1}}^{{t_0}} {{{({t_0} - s)}^{\alpha - 1}}(L{\bf{1}})(s)ds} } \hfill \\ {} \hfill & \le \hfill & { - m({t_1}).} \hfill \\ \end{array} \end{array}$$

then m(t0) ≤ 0. This is a contradiction.

Case 2. Assume m(0) > 0. Note that m(T) > 0. there are two situations:

(2a) r = 1, (2b) 0 < r < 1.

Subcase 2a. Let r = 1.

Subcase 2a(i).Suppose m(t) ≥ 0 on J and m(t) ≢ 0. then

m(t)m(0)1Γ(α)0t(ts)α1(Lm)(s)ds$$\begin{array}{} \displaystyle m(t) - m(0) \le - \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} (Lm)(s)ds \end{array}$$

take the boundary conditions into account, it can be obtain

m(0)m(T)m(0)1Γ(α)0T(Ts)α1(Lm)(s)ds.$$\begin{array}{} \displaystyle m(0) \le m(T) \le m(0) - \frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} (Lm)(s)ds. \end{array}$$

Hence 0T(Ts)α1(Lm)(s)ds0$\begin{array}{} \displaystyle \int_0^T {{{(T - s)}^{\alpha - 1}}} (Lm)(s)ds \le 0 \end{array}$ which is a contradiction.

Subcase 2a(ii). Let m(t) < 0, t ∊ (0,T]. Put

m(t1)=mintJm(t)=λ,λ>0.$$\begin{array}{} \displaystyle m({t_1}) = {\min _{t \in J}}m(t) = - \lambda ,\;\;\lambda \lt 0. \end{array}$$

Then cDαm(t) ≤ −(Lm)(t) ≤ λ (L1)(t), tJ.

Taking the fractional integration operator It1+α$\begin{array}{} \displaystyle I_{{t_1} + }^\alpha \end{array}$ on the both sides of the differential inequality in (2) , we see that

m(T)m(t1)λΓ(α)t1T(Ts)α1(L1)(s)dsm(T)+λλΓ(α)t1T(Ts)α1(L1)(s)dsλ.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {m(T) - m({t_1})}& \le &{\frac{\lambda }{{\Gamma (\alpha )}}\smallint _{{t_1}}^T{{(T - s)}^{\alpha - 1}}(L{\bf{1}})(s)ds}\\ {m(T) + \lambda }& \le &{\frac{\lambda }{{\Gamma (\alpha )}}\smallint _{{t_1}}^T{{(T - s)}^{\alpha - 1}}(L{\bf{1}})(s)ds \le \lambda .} \end{array} \end{array}$$

Then m(T) ≤ 0. This is a contradiction.

Subcase 2b. Let 0 < r < 1.

Subcase 2b(i). Let m(t) ≥ 0 on J and m(t) ≢ 0. Then, in view of the boundary conditions, we have

1rm(0)m(T)m(0)1Γ(α)0T(Ts)α1(Lm)(s)ds.$$\begin{array}{} \displaystyle \frac{1}{r}m(0) \le m(T) \le m(0) - \frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} (Lm)(s)ds. \end{array}$$

So

m(0)r1r1Γ(α)0T(Ts)α1(Lm)(s)ds.$$\begin{array}{} \displaystyle m(0) \le - \frac{r}{{1 - r}}\frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} (Lm)(s)ds. \end{array}$$

Hence

m(t)r1r1Γ(α)0T(Ts)α1(Lm)(s)ds1Γ(α)0t(ts)α1(Lm)(s)ds0.$$\begin{array}{} \displaystyle m(t) \le - \frac{r}{{1 - r}}\frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} (Lm)(s)ds - \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} (Lm)(s)ds \le 0. \end{array}$$

Since m(t) ≥ 0, tJ. This means that m(t) ≡ 0. This is a contradiction.

Subcase 2b(ii). Let m(t) < 0. Put

m(t1)=mintJm(t)=λ,  λ>0.$$\begin{array}{} \displaystyle m({t_1}) = {\min _{t \in J}}m(t) = - \lambda ,\;\;\lambda \gt 0. \end{array}$$

Then cDam(t) ≤ −(Lm)(t) ≤ λ (L1)(t). In the same way as before, we see that

m(T)+λλ.$$\begin{array}{} \displaystyle m(T) + \lambda \le \lambda . \end{array}$$

We can obtain m(T ) ≤ 0,this is a contradiction. Thus,the proof is completed.

Define I0f (t) = f (t), for f(t) ∊ C(J,ℝ), tJ, the following holds:

Lemma 5

Let LC(E,E) be a positive linear operator and KC(J,ℝ). Let mC1(J,ℝ) satisfy:

{cDαm(t)K(t)m(t)(Lm)(t),tJ,m(0)rm(T),r[0,1]$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }m(t) \le - K(t)m(t) - (Lm)(t),}&{t \in J,}\\ {m(0) \le rm(T),}&{r \in [0,1]} \end{array}\right. \end{array}$$

with0rq¯(T)1$\begin{array}{} \displaystyle 0 \le r\bar q(T) \le 1 \end{array}$forq¯(t)=e0tK(s)ds$\begin{array}{} \displaystyle \bar q(t) = {e^{ - \int_0^t K (s)ds}} \end{array}$. In addition, we assume that

suptJ{1Γ(α)0t(ts)α1I0+1α[e0sK(τ)dτ(Lq¯)](s)ds}1.$$\begin{array}{} \displaystyle \mathop {\sup }\limits_{t \in J} \{ \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} I_{0 + }^{1 - \alpha }[{e^{\int_0^s K (\tau )d\tau }}(L\bar q)](s)ds\} \le 1. \end{array}$$

Then m(t) ≤ 0, tJ.

Proof. Set q(t)=e0tK(s)dsm(t).$\begin{array}{} \displaystyle q(t)=e^{\int^t_0K(s)ds }m(t) \end{array}$, then

cDαq(t)=I0+1αq(t)I0+1αe0tK(s)ds(Lq˜)(t)$$\begin{array}{} \displaystyle ^c{D^\alpha }q(t) = I_{0 + }^{1 - \alpha }{q^\prime }(t) \le - I_{0 + }^{1 - \alpha }{e^{\int_0^t {K(s)ds} }}(L\tilde q)(t) \end{array}$$

where, q˜=q¯(t)q(t)$\begin{array}{} \displaystyle \tilde q = \overline q (t)q(t) \end{array}$. Thus, system (4) takes the from

{cDαq(t)I0+1αe0tK(s)ds(Lq˜)(t), tJ,q(0)r1q(T),  for r1=rq¯(T).$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }q(t) \le - I_{0 + }^{1 - \alpha }{e^{\int_0^t {K(s)ds} }}(L\tilde q)(t),} \hfill & {t \in J,} \hfill \\ {q(0) \le {r_1}q(T),for} \hfill & {{r_1} = r\overline q (T).} \end{array}\right. \end{array}$$

According to the Lemma 4, the proof is complete.

Lemma 6

Let LC(E,E) be a positive linear operator and K, σ ∊ C(J,ℝ). Assume that condition (5) holds, 0 ≤ r1 < 1 withr1=re0TK(s)ds$\begin{array}{} \displaystyle {r_1} = r{e^{ - \smallint _0^TK(s)ds}} \end{array}$. Then the linear problem

{cDαν(t)=K(t)ν(t)(Lν)(t)+σ(t),tJ,ν(0)=rν(T)+β,β,$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }\nu (t) = - K(t)\nu (t) - (L\nu )(t) + \sigma (t),} \hfill & {t \in J,} \hfill \\ {\nu (0) = r\nu (T) + \beta ,} \hfill & {\beta \in \mathbb{R},} \end{array}\right. \end{array}$$

for ν(t) ∊ C1(J,ℝ) has a unique solution uC1(J,ℝ).

Proof. To begin with, we prove the problem owns at most one solution.

Assume that it has two different solutions X,YC1(J,ℝ). let p = XY ,then p satisfies the following problem

{cDαp(t)=K(t)p(t)(Lp)(t),p(0)=rp(T).$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }p(t) = - K(t)p(t) - (Lp)(t),}\\ {p(0) = rp(T).} \end{array}\right. \end{array}$$

By the Lemma 5, we have p(t) ≤ 0, so X(t) ≤ Y (t), tJ. On the other hand, Let p = YX, similarly, we can get Y (t) ≤ X(t), tJ. then X = Y.

We will show problem 7 has a solution.Put u(t)=e0tK(s)dsν(t)$\begin{array}{} \displaystyle u(t) = {e^{\int_0^t K (s)ds}}\nu(t) \end{array}$ ,then system 7 takes the form

{cDαu(t)=(B*u)(t)+σ*(t),t[0,T],u(0)=r1u(T)+β,β,$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }u(t) = - ({B^*}u)(t) + {\sigma ^*}(t),} \hfill & {t \in [0,T],} \hfill \\ {u(0) = {r_1}u(T) + \beta ,} \hfill & {\beta \in \mathbb{R},} \hfill \\ \end{array}\right. \end{array}$$

where B*=I0+1α[e0tK(s)ds(Lu˜)](t), u˜=ue0tK(s)ds, σ*=I0+1α[e0tK(s)dsσ](t)$\begin{array}{} \displaystyle {B^*} = I_{0 + }^{1 - \alpha }[{e^{\int_0^t {K(s)ds} }}(L\tilde u)](t),\tilde u = u{e^{ - \int_0^t {K(s)ds} }},{\sigma ^*} = I_{0 + }^{1 - \alpha }[{e^{\int_0^t {K(s)ds} }}\sigma ](t) \end{array}$

Applying the fractional integration operator I0+α$\begin{array}{} \displaystyle I_{0 + }^\alpha \end{array}$ to (8),we have

u(t)=r11r11Γ(α)0T(Ts)α1(B*u)(s)ds1Γ(α)0t(ts)α1(B*u)(s)ds+σ**(t)(Au)(t)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {u(t) = } \hfill & { - \frac{{{r_1}}}{{1 - {r_1}}}\frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}({B^*}u)(s)ds - \frac{1}{{\Gamma (\alpha )}}} \int_0^t {{{(t - s)}^{\alpha - 1}}({B^*}u)(s)ds} } \hfill \\ {} \hfill & { + {\sigma ^{**}}(t) \equiv (Au)(t)} \hfill \\ \end{array} \end{array}$$

where

σ**=r11r11Γ(α)0T(Ts)α1σ*(s)ds+β1r1+1Γ(α)0t(ts)α1σ*(s)ds.$$\begin{array}{} \displaystyle {\sigma ^{**}} = \frac{{{r_1}}}{{1 - {r_1}}}\frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} {\sigma ^*}(s)ds + \frac{\beta }{{1 - {r_1}}} + \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} {\sigma ^*}(s)ds. \end{array}$$

Let νnC(J,ℝ) and νnν in C(J,ℝ), then unC(J,ℝ), unuinC(J,ℝ),here

un(t)=e0tK(s)dsνn(t),  u(t)=e0tK(s)dsν(t).$$\begin{array}{} \displaystyle {u_n}(t) = {e^{\int_0^t K (s)ds}}{\nu_n}(t),\;\;u(t) = {e^{\int_0^t K (s)ds}}\nu(t). \end{array}$$

Hence

|(Aun)(t)(Au)(t)|r11r11Γ(α)0T(Ts)α1|(B*un)(s)(B*u)(s)|ds+1Γ(α)0t(ts)α1|(B*un)(s)(B*u)(s)|dsr11r11Γ(α)supt[0,T]|(B*un)(t)(B*u)(t)|0T(Ts)α1ds+1Γ(α)supt[0,T]|(B*un)(t)(B*u)(t)|0t(ts)α1ds11r11Γ(α+1)supt[0,T]|(B*un)(t)(B*u)(t)|.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {|(A{u_n})(t) - (Au)(t)|}&{ \le \frac{{{r_1}}}{{1 - {r_1}}}\frac{1}{{\Gamma (\alpha )}}\int_0^T {{{(T - s)}^{\alpha - 1}}} |({B^*}{u_n})(s) - ({B^*}u)(s)|ds}\\ {}&{ + \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}} |({B^*}{u_n})(s) - ({B^*}u)(s)|ds}\\ {}&{ \le \frac{{{r_1}}}{{1 - {r_1}}}\frac{1}{{\Gamma (\alpha )}}\mathop {\sup }\limits_{t \in [0,T]} |({B^*}{u_n})(t) - ({B^*}u)(t)|\int_0^T {{{(T - s)}^{\alpha - 1}}} ds}\\ {}&{ + \frac{1}{{\Gamma (\alpha )}}\mathop {\sup }\limits_{t \in [0,T]} |({B^*}{u_n})(t) - ({B^*}u)(t)|\int_0^t {{{(t - s)}^{\alpha - 1}}} ds}\\ {}&{ \le \frac{1}{{1 - {r_1}}}\frac{{{T^\alpha }}}{{\Gamma (\alpha + 1)}}\mathop {\sup }\limits_{t \in [0,T]} |({B^*}{u_n})(t) - ({B^*}u)(t)|.} \end{array} \end{array}$$

Since

|(B*un)(t)(B*u)(t)| |I0+1α[e0tK(s)ds(Lu˜n)](t)I0+1α[e0tK(s)ds(Lu˜)](t)|1Γ(1α)0t(ts)αe0sK(τ)dτ|(L(u˜nu˜))(s)|ds1Γ(1α)supt[0,T]{|(Lu˜n)(t)(Lu˜)(t)|e0tK(s)ds}0t(ts)αdsT1αΓ(2α)supt[0,T]{|(Lu˜n)(t)(Lu˜)(t)|e0tK(s)ds}.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\left| {({B^*}{u_n})(t) - ({B^*}u)(t)} \right|} \\ \end{array}} \hfill & \le \hfill & {\left| {I_{0 + }^{1 - \alpha }\left[ {{e^{\int_0^t {K(s)ds} }}(L{{\tilde u}_n})} \right](t) - I_{0 + }^{1 - \alpha }\left[ {{e^{\int_0^t {K(s)ds} }}(L\tilde u)} \right](t)} \right|} \hfill \\ {} \hfill & \le \hfill & {\frac{1}{{\Gamma (1 - \alpha )}}\int_0^t {{{(t - s)}^{ - \alpha }}} {e^{\int_0^s {K(\tau )d\tau } }}\left| {(L({{\tilde u}_n} - \tilde u))(s)} \right|ds} \hfill \\ {} \hfill & \le \hfill & {\frac{1}{{\Gamma (1 - \alpha )}}\mathop {\sup }\limits_{t \in [0,T]} \left\{ {|(L{{\tilde u}_n})(t) - (L\tilde u)(t)|{e^{\int_0^t {K(s)ds} }}} \right\}\int_0^t {{{(t - s)}^{ - \alpha }}} ds} \hfill \\ {} \hfill & \le \hfill & {\frac{{{T^{1 - \alpha }}}}{{\Gamma (2 - \alpha )}}\mathop {\sup }\limits_{t \in [0,T]} \left\{ {|(L{{\tilde u}_n})(t) - (L\tilde u)(t)|{e^{\int_0^t {K(s)ds} }}} \right\}.} \hfill \\ \end{array} \end{array}$$

By the condition that LC(E,E) is a positive linear operator which implies (Lu˜n)(t)(Lu˜)(t)$\begin{array}{} \displaystyle (L\widetilde{u_n})(t)\rightarrow (L\widetilde{u})(t) \end{array}$ as u˜n u˜, n$\begin{array}{} \displaystyle \widetilde{u_n}\rightarrow \widetilde{u},~n\rightarrow \infty \end{array}$. So |(B*un)(t) - (B*u)(t)| → 0 as n → ∞ for t ∊ ∞ for tJ. Thus, we have

suptJ|(Aun)(t)(Au)(t)|0  if n,$$\begin{array}{} \displaystyle \mathop {sup}\limits_{t \in J} \left| {(A{u_n})(t) - (Au)(t)} \right| \to 0{\rm{ }}if{\rm{ }}n \to \infty , \end{array}$$

So operator A is continuous. Moreover,

suptJ|(Au)(t)|suptJ|(Aun)(t)(Au)(t)|+suptJ|(Au)(t)|,$$\begin{array}{} \displaystyle \mathop {\sup }\limits_{t \in J} \left| {(Au)(t)} \right| \le \mathop {\sup }\limits_{t \in J} \left| {(A{u_n})(t) - (Au)(t)} \right| + \mathop {\sup }\limits_{t \in J} \left| {(Au)(t)} \right|, \end{array}$$

the operator A : C(J,ℝ) → C(J,ℝ) is bounded. In addition, supt∊[0,T] |(B*u)(t)| < ∞. Moreover, for t1, t2 ∊ [0,T] with t1t2, we have

|(Au)(t1)(Au)(t2)|1Γ(α)0t1|(t1s)α1(t2s)α1||(B*u)(s)|ds+1Γ(α)t1t2|(t2s)α1(B*u)(s)|ds+1Γ(α)0t1|(t1s)α1(t2s)α1||σ*(s)|ds+1Γ(α)t1t2|(t2s)α1σ*(s)|dssupt[0,T]|(B*u)(t)|2(t2t1)αΓ(α+1)+supt[0,T]|σ*(t)|2(t2t1)αΓ(α+1)[supt[0,T]|σ*(t)|+supt[0,T]|(B*u)(t)|]2(t2t1)αΓ(α+1).$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\left| {(Au)({t_1}) - (Au)({t_2})} \right|} \\ \end{array}} \hfill & \le \hfill & {\frac{1}{{\Gamma (\alpha )}}\int_0^{{t_1}} {|{{({t_1} - s)}^{\alpha - 1}} - {{({t_2} - s)}^{\alpha - 1}}||({B^*}u)(s)|ds} } \hfill \\ {} \hfill & {} \hfill & { + \frac{1}{{\Gamma (\alpha )}}\int_{{t_1}}^{{t_2}} {|{{({t_2} - s)}^{\alpha - 1}}({B^*}u)(s)|ds} } \hfill \\ {} \hfill & {} \hfill & { + \frac{1}{{\Gamma (\alpha )}}\int_0^{{t_1}} {|{{({t_1} - s)}^{\alpha - 1}} - {{({t_2} - s)}^{\alpha - 1}}||{\sigma ^*}(s)|ds} } \hfill \\ {} \hfill & {} \hfill & { + \frac{1}{{\Gamma (\alpha )}}\int_{{t_1}}^{{t_2}} {|{{({t_2} - s)}^{\alpha - 1}}{\sigma ^*}(s)|ds} } \hfill \\ {} \hfill & \le \hfill & {\mathop {\sup }\limits_{t \in [0,T]} |({B^*}u)(t)|\frac{{2{{({t_2} - {t_1})}^\alpha }}}{{\Gamma (\alpha + 1)}} + \mathop {\sup }\limits_{t \in [0,T]} |{\sigma ^*}(t)|\frac{{2{{({t_2} - {t_1})}^\alpha }}}{{\Gamma (\alpha + 1)}}} \hfill \\ {} \hfill & \le \hfill & {\left[ {\mathop {\sup }\limits_{t \in [0,T]} |{\sigma ^*}(t)| + \mathop {\sup }\limits_{t \in [0,T]} |({B^*}u)(t)|} \right]\frac{{2{{({t_2} - {t_1})}^\alpha }}}{{\Gamma (\alpha + 1)}}.} \hfill \\ \end{array} \end{array}$$

Since σ(t) is continuous, then supt∊[0,T] |σ* (t)| < ∞. Thus, It is proved that the operator A is equicontinuous on J, with Arzela-Ascoli theorem, It can be obtain that A is compact. Hence, by Schauder’s fixed point theorem, the operator A has a fixed point uC(J,ℝ). On the other hand, u′ exists and u′ ∊ C(J,ℝ). The proof is completed.

Main results

uC1(J,ℝ) is called a lower solution of problem (1) if

{cDαu(t)(Qu)(t),   tJ,g(u(0),u(T))0$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }u(t) \le (Qu)(t),\;\;\;t \in J,}\\ {g(u(0),u(T)) \le 0} \end{array}\right. \end{array}$$

and it is an upper solution of problem (1) if the above inequalities are reversed.

A solution uC1(J,ℝ) of problem (1) is called maximal if x(t) ≤ u(t), tJ, for each solution x of problem (1), and minimal if the reverse inequality holds.

The existence results for the extremal solutions of problem (1) presented as following:

Theorem 7

Assume that

H1: QC(E,E) is a causal operator, gC(R × R,R),

H2: z0, y0C1(J,R) are lower and upper solutions of problem (1) respectively, and z0(t) ≤ y0(t), tJ,

H3: there exists KC(J,R) such that

(Qu)(t)(Qu¯)(t)K(t)[u¯(t)u(t)]+(L(u¯u))(t),$$\begin{array}{} \displaystyle (Qu)(t) - (Q\bar u)(t) \le K(t)[\bar u(t) - u(t)] + (L(\bar u - u))(t), \end{array}$$

forz0(t)u(t)u¯(t)y0(t),  tJ$\begin{array}{} \displaystyle {z_0}(t) \le u(t) \le \bar u(t) \le {y_0}(t),\;\;t \in J \end{array}$,

H4: there exist constants 0 ≤ ba, a > 0 such that

g(u¯,ν¯)g(u,ν)a(u¯u)b(ν¯ν),$$\begin{array}{} \displaystyle g(\bar u,\bar \nu) - g(u,\nu) \le a(\bar u - u) - b(\bar \nu - \nu), \end{array}$$

forz0(0)uu¯y0(0)$\begin{array}{} \displaystyle {z_0}(0) \le u \le \bar u \le {y_0}(0) \end{array}$andz0(T)νν¯y0(T)$\begin{array}{} \displaystyle {z_0}(T) \le \nu \le \bar \nu \le {y_0}(T) \end{array}$. Moreover, the condition(5)holds. then, there exists monotone sequences {zn(t)}, {yn(t)} such thatlimnzn(t)=p(t), limnβn(t)=r(t)$\begin{array}{} \displaystyle \mathop {\lim }\limits_{n \to \infty } {z_n}(t) = p(t),\;\mathop {\lim }\limits_{n \to \infty } {\beta _n}(t) = r(t) \end{array}$, where p, r are minimal and maximal solutions of problem(1), respectively, satisfying z0p(t) ≤ r(t) ≤ y0.

Proof. Consider the linear BVP

{cDαu(t)+K(t)u(t)=(Lu)(t)+ση(t),u(0)=η(0)1ag(η(0),η(T))+r[u(T)η(T)],$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }u(t) + K(t)u(t) = - (Lu)(t) + {\sigma _\eta }(t),}\\ {u(0) = \eta (0) - \frac{1}{a}g(\eta (0),\eta (T)) + r[u(T) - \eta (T)],} \end{array}\right. \end{array}$$

where ση(t) = ()(t) + K(t)η(t) + ()(t), ηC[J,R] and z0(t) ≤ η(t) ≤ y0(t). By lemma 6, the linear BVP (9) has a unique solution, we set [z0,y0] = {wC(J,ℝ) : z0(t) ≤ w(t) ≤ y0(t)}. Now we claim that any solution u(t) of (9) satisfies u(t) ∊ [z0(t),y0(t)], tJ. By the conditions H2, H3, we have

cDαz0(t)K(t)z0(t)(Lz0)(t)+σz0(t)$$\begin{array}{} \displaystyle ^c{D^\alpha }{z_0}(t) \le - K(t){z_0}(t) - (L{z_0})(t) + {\sigma _{{z_0}}}(t) \end{array}$$

and

cDαu(t)=K(t)u(t)(Lu)(t)+ση(t)K(t)u(t)(Lu)(t)+σz0(t).$$\begin{array}{} \displaystyle ^c{D^\alpha }u(t) = - K(t)u(t) - (Lu)(t) + {\sigma _\eta }(t) \ge - K(t)u(t) - (Lu)(t) + {\sigma _{{z_0}}}(t). \end{array}$$

Put p = z0u, we have

cDαp(t)=Dcαz0(t)cDαu(t)K(t)z0(t)(Lz0)(t)+σz0(t)+K(t)u(t)+(Lu)(t)σz0(t)=K(t)p(t)(Lp)(t)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {^c{D^\alpha }p(t)} \hfill & = \hfill & {{}_{}^c{D^\alpha }{z_0}(t){ - ^c}{D^\alpha }u(t)} \hfill \\ {} \hfill & \le \hfill & { - K(t){z_0}(t) - (L{z_0})(t) + {\sigma _{{z_0}}}(t) \ge + K(t)u(t) + (Lu)(t) - {\sigma _{{z_0}}}(t)} \hfill \\ {} \hfill & = \hfill & { - K(t)p(t) - (Lp)(t)} \hfill \\ \end{array} \end{array}$$

and

p(0)=z0(0)u(0)=z0(0)η(0)+1ag(η(0),η(T))r[u(T)η(T)]rp(T).$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {p(0)} \hfill & = \hfill & {{z_0}(0) - u(0)} \hfill \\ {} \hfill & = \hfill & {{z_0}(0) - \eta (0) + \frac{1}{a}g(\eta (0),\eta (T)) - r[u(T) - \eta (T)]} \hfill \\ {} \hfill & \le \hfill & {rp(T).} \hfill \\ \end{array} \end{array}$$

The last inequality is got by the condition H4. Thus, from the Lemma 5, we have p(t) ≤ 0 and hence z0(t) ≤ u(t), tJ. Similarly, we can show that u(t) ≤ y0(t), tJ. Hence, we have z0(t) ≤ u(t) ≤ y0(t).

Next consider the boundary value problem

{cDαyn+1(t)=(Qyn)(t)(L(yn+1yn))(t)K(t)[yn+1(t)yn(t)],yn+1(0)=yn(0)1ag(yn(0),yn(T))+r[yn+1(T)yn(T)]$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }{y_{n + 1}}(t) = (Q{y_n})(t) - (L({y_{n + 1}} - {y_n}))(t) - K(t)[{y_{n + 1}}(t) - {y_n}(t)],}\\ {{y_{n + 1}}(0) = {y_n}(0) - \frac{1}{a}g({y_n}(0),{y_n}(T)) + r[{y_{n + 1}}(T) - {y_n}(T)]} \end{array}\right. \end{array}$$

and

{cDαzn+1(t)=(Qzn)(t)(L(zn+1zn))(t)K(t)[zn+1(t)zn(t)],zn+1(0)=zn(0)1ag(zn(0),zn(T))+r[zn+1(T)zn(T)].$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{l}} {^c{D^\alpha }{z_{n + 1}}(t) = (Q{z_n})(t) - (L({z_{n + 1}} - {z_n}))(t) - K(t)[{z_{n + 1}}(t) - {z_n}(t)],}\\ {{z_{n + 1}}(0) = {z_n}(0) - \frac{1}{a}g({z_n}(0),{z_n}(T)) + r[{z_{n + 1}}(T) - {z_n}(T)].} \end{array}\right. \end{array}$$

From the (9), we know problem (10) and (11) have a solution in the sector [z0(t), y0(t)].

Next, we will show that

z0(t)z1(t)z2(t)zn(t)yn(t)y2(t)y1(t)y0(t),   tJ.$$\begin{array}{} \displaystyle {z_0}(t) \le {z_1}(t) \le {z_2}(t) \le \cdots \le {z_n}(t) \le {y_n}(t) \le \cdots \le {y_2}(t) \le {y_1}(t) \le {y_0}(t),\;\;\;t \in J. \end{array}$$

First, we show that z0z1. Now

cDαz0(t)(Qz0)(t)   and  cDαz1(t)=(Qz0)(t)(L(z1z0))(t)K(t)[z1(t)z0(t)].$$\begin{array}{} \displaystyle ^c{D^\alpha }{z_0}(t) \le (Q{z_0})(t)\;\;\;and\;{\;^c}{D^\alpha }{z_1}(t) = (Q{z_0})(t) - (L({z_1} - {z_0}))(t) - K(t)[{z_1}(t) - {z_0}(t)]. \end{array}$$

Let p = z0z1. Then

cDαp(t)=&^cDαz0(t)cDαz1(t)(Qz0)(t)(Lz0)(t)(Qz0)(t)+(Lz1)(t)+K(t)[z1(t)z0(t)]=K(t)p(t)(Lp)(t)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {^c{D^\alpha }p(t)} \hfill & = \hfill & {c{D^\alpha }{z_0}(t){ - ^c}{D^\alpha }{z_1}(t)} \hfill \\ {} \hfill & \le \hfill & {(Q{z_0})(t) - (L{z_0})(t) - (Q{z_0})(t) + (L{z_1})(t) + K(t)[{z_1}(t) - {z_0}(t)]} \hfill \\ {} \hfill & = \hfill & { - K(t)p(t) - (Lp)(t)} \hfill \\ \end{array} \end{array}$$

and

p(0)=z0(0)z1(0)=1ag(z0(0),z0(T))r[z1(T)z0(T)]rp(T).$$\begin{array}{} \displaystyle p(0) = {z_0}(0) - {z_1}(0) = \frac{1}{a}g({z_0}(0),{z_0}(T)) - r[{z_1}(T) - {z_0}(T)] \le rp(T). \end{array}$$

By Lemma 5, we show that z0 ≤ z1, tJ.

Assume zk−1(t) ≤ zk(t), tJ. Let p = zkzk+1, using hypothesis (H3) and simplifying, we obtain

cDαp(t)=Dcαzk(t)cDαzk+1(t)=(Qzk1)(t)(L(zkzk1)(t)K(t)[zk(t)zk1(t)]     (Qzk)(t)+(L(zk+1zk))(t)+K(t)[zk+1(t)zk(t)]K(t)[zk(t)L(zk+1)(t)K(t)[zk(t)zk1(t)]    +K(t)[zk+1(t)zk(t)]=K(t)p(t)(Lp)(t)$$\begin{array}{} \displaystyle ^{c}D^{\alpha}p(t)&=& ^{c}D^{\alpha}z_k(t)-^{c}D^{\alpha}z_{k+1}(t)\\ \nonumber &=& (Qz_{k-1})(t)-(L(z_{k}-z_{k-1}))(t)-K(t)[z_k(t)-z_{k-1}(t)]\\ \nonumber &~~&-(Qz_k)(t)+(L(z_{k+1}-z_k))(t)+ K(t)[z_{k+1}(t)-z_k(t)]\\ \nonumber &\leq&K(t)[z_k(t)-z_{k-1}(t)]-L(z_k-z_{k+1})(t)-K(t)[z_k(t)-z_{k-1}(t)]\\ \nonumber &~~&+K(t)[z_{k+1}(t)-z_k(t)]\\ \nonumber &=&-K(t)p(t)-(Lp)(t) \end{array}$$

and

p(0)=zk(0)zk+1(0)=zk1(0)1ag(zk1(0)),zk1(T))+r[zk(T)zk1(T)]zk(0)    +1ag(zk(0),zk(T)r[zk+1(T)zk(T)])zk1(0)zk(0)+1a[a(zk(0)zk1(0))b(zk(T)zk1(T))]    +r[zk(T)zk1(T)]r[zk+1(T)zk(T)]=rp(T).$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {p(0)} \hfill & { = {z_k}(0) - {z_{k + 1}}(0)} \hfill \\ {} \hfill & { = {z_{k - 1}}(0) - \frac{1}{a}g({z_{k - 1}}(0)),{z_{k - 1}}(T)) + r[{z_k}(T) - {z_{k - 1}}(T)] - {z_k}(0)} \hfill \\ {} \hfill & {{\rm{ }} + \frac{1}{a}g({z_k}(0),{z_k}(T) - r[{z_{k + 1}}(T) - {z_k}(T)])} \hfill \\ {} \hfill & { \le {z_{k - 1}}(0) - {z_k}(0) + \frac{1}{a}[a({z_k}(0) - {z_{k - 1}}(0)) - b({z_k}(T) - {z_{k - 1}}(T))]} \hfill \\ {} \hfill & {{\rm{ }} + r[{z_k}(T) - {z_{k - 1}}(T)] - r[{z_{k + 1}}(T) - {z_k}(T)]} \hfill \\ {} \hfill & { = rp(T).} \hfill \\ \end{array} \end{array}$$

Again, using Lemma 5, we get zk(t) ≤ zk+1(t), tJ, thus, by induction, we have

z0(t)z1(t)zk(t),  tJ.$$\begin{array}{} \displaystyle {z_0}(t) \le {z_1}(t) \le \cdots \le {z_k}(t),\;\;t \in J. \end{array}$$

Similarly, we can show that

yk(t)yk1(t)y1(t)y0(t),  tJ.$$\begin{array}{} \displaystyle {y_k}(t) \le {y_{k - 1}}(t) \le \cdots \le {y_1}(t) \le {y_0}(t),\;\;t \in J. \end{array}$$

We next show that zn(t) ≤ yn(t), tJ, n = 1, 2, ···

Put p = znyn and proceeding as before we arrive at

cDαp(t)=(cDαzn)(t)(cDαyn)(t)K(t)p(t)(Lp)(t)$$\begin{array}{} \displaystyle ^c{D^\alpha }p(t) = {(^c}{D^\alpha }{z_n})(t) - {(^c}{D^\alpha }{y_n})(t) \le - K(t)p(t) - (Lp)(t) \end{array}$$

and p(0) ≤ rp(T ) which yields zn(t) ≤ yn(t), tJ, n = 1, 2, ···, from Lemma 2.8. Hence, we have

z0(t)z1(t)zn(t)yn(t)y1(t)y0(t),  tJ.$$\begin{array}{} \displaystyle {z_0}(t) \le {z_1}(t) \le \cdots \le {z_n}(t) \le {y_n}(t) \le \cdots \le {y_1}(t) \le {y_0}(t),\;\;t \in J. \end{array}$$

It then follows, using standard arguments, that limnzn(t)=p(t)$\begin{array}{} \displaystyle \mathop {\lim }\limits_{n \to \infty } {z_n}(t) = p(t) \end{array}$ and lim nyn(t)=r(t)$\begin{array}{} \displaystyle \mathop {{\rm{lim }}}\limits_{n \to \infty } {y_n}(t) = r(t) \end{array}$ uniform on J, and p(t) and r(t) are solutions of problem (1).

To show that p(t) and r(t) are extremal solutions of problem (1). Let u(t) be any solution of problem (1) such that u(t) ∊ [z0,y0], and suppose for some k ≥ 0, zk−1(t) ≤ u(t) ≤ yk−1(t), tJ.

Let p(t) = zk(t) − u(t). Then

cDαp(t)=DcαzkcDαu(t)=(Qzk1)(t)(L(zkzk1)(t)K(t)[zk(t)zk1(t)](Qu)(t),$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {^c{D^\alpha }p(t)} \hfill & { = {}_{}^c{D^\alpha }{z_k}{ - ^c}{D^\alpha }u(t)} \hfill \\ {} \hfill & { = ({Q_{zk - 1}})(t) - (L({z_k} - {z_k} - 1)(t) - K(t)[{z_k}(t) - {z_k} - 1(t)] - (Qu)(t),} \hfill \\ \end{array} \end{array}$$

Since zk − 1(t) ≤ u(t), we have from the hypothesis H3 of the theorem that

cDαp(t)K(t)p(t)(Lp)(t).$$\begin{array}{} \displaystyle ^c{D^\alpha }p(t) \le - K(t)p(t) - (Lp)(t). \end{array}$$

Also p(0) ≤ rp(T ). Now applying Lemma 5, we get zk(t) ≤ u(t). Similarly, u(t) ≤ yk(t).Thus,from the induction principle, it follows that zn(t) ≤ u(t) ≤ yn(t), for all n, tJ. Taking limits as n → ∞, we obtain p(t) ≤ u(t) ≤ r(t), hence p(t) and r(t) are extremal solutions of problem (1). The proof is complete.

We say that u, wC1(J, ℝ) are coupled lower and upper solutions of problem (1) if

{cDαu(t)(Qu)(t),tJg(u(0),w(T))0.$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }u(t) \le (Qu)(t),}&{t \in J}\\ {g(u(0),w(T)) \le 0.}&{} \end{array}\right. \end{array}$$

and

{cDαw(t)(Qw)(t),tJg(w(0),u(T))0.$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }w(t) \ge (Qw)(t),}&{t \in J}\\ {g(w(0),u(T)) \ge 0.}&{} \end{array}\right. \end{array}$$

Functions y, zC1(J,ℝ) are called quasisolutions of problem (1) if y and z satisfy the following system:

{cDαy(t)=(Qy)(t),for tJ,g(y(0),z(T))=0,cDαz(t)=(Qz)(t),for tJ,g(z(0),y(T))=0.$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }y(t) = (Qy)(t),} & {{\rm{for }}t \in J,} & {g(y(0),z(T)) = 0,} \\ {^c{D^\alpha }z(t) = (Qz)(t),} & {{\rm{for }}t \in J,} & {g(z(0),y(T)) = 0.} \\ \end{array}\right. \end{array}$$

The next theorem deals with the existence results of quasisolutions for problem (1).

Theorem 8

Suppose that

H2¯:z0$\begin{array}{} \displaystyle \overline {{H_2}} :{z_0} \end{array}$, y0C1(J,ℝ) are coupled lower and upper solutions of problem (1) and y0(t) ≤ z0(t), tJ, H4¯$\begin{array}{} \displaystyle \overline {{H_4}} \end{array}$: there exists constants a > 0, b ≥ 0 such that

{g(u¯,ν)g(u,ν)a(u¯u) for  y0(0)uu¯z0(0),tJ,g(u,ν)g(u,ν¯)b(νν¯)  fory0(T)νν¯z0(T),  tJ.$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {g(\bar u,\nu) - g(u,\nu) \le a(\bar u - u){\rm{ }}for\;\;{y_0}(0) \le u \le \bar u \le {z_0}(0),\;\;t \in J,}\\ {g(u,\nu) - g(u,\bar \nu) \le b(\nu - \bar \nu){\rm{ }}for\;\;{y_0}(T) \le \nu \le \bar \nu \le {z_0}(T),\;\;t \in J.} \end{array}\right. \end{array}$$

if assumptions H1, H2¯$\begin{array}{} \displaystyle \overline {{H_2}} \end{array}$, H3,H4¯$\begin{array}{} \displaystyle \overline {{H_4}} \end{array}$hold,then there exists a quasisolutions for problem (1) in the sector [y0,z0].

Proof. We define sequences {yn,zn} as followings:

{cDαyn+1(t)=(Qyn)(t)(L(yn+1yn))(t)K(t)[yn+1(t)yn(t)],  tJyn+1(0)=yn(0)1ag(yn(0),zn(T)),$$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {^c{D^\alpha }{y_{n + 1}}(t) = (Q{y_n})(t) - (L({y_{n + 1}} - {y_n}))(t) - K(t)[{y_{n + 1}}(t) - {y_n}(t)],{\rm{ }}t \in J} \hfill \\ {{y_{n + 1}}(0) = {y_n}(0) - \frac{1}{a}g({y_n}(0),{z_n}(T)),} \hfill \\ \end{array}} \right. \end{array}$$

and

{cDαzn+1(t)=(Qzn)(t)(L(zn+1zn))(t)K(t)[zn+1(t)zn(t)],  tJzn+1(0)=zn(0)1ag(zn(0),yn(T)),$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {^c{D^\alpha }{z_{n + 1}}(t) = (Q{z_n})(t) - (L({z_{n + 1}} - {z_n}))(t) - K(t)[{z_{n + 1}}(t) - {z_n}(t)],t \in J} \hfill \\ {{z_{n + 1}}(0) = {z_n}(0) - \frac{1}{a}g({z_n}(0),{y_n}(T)),} \hfill \\ \end{array}\right. \end{array}$$

for n = 0,1, ···.

In a way similar to the way we used in the proof of Theorem 7, we have

z0(t)z1(t)zn(t)yn(t)y1(t)y0(t),  tJ.$$\begin{array}{} \displaystyle z_0(t)\leq z_1(t) \leq \cdots \leq z_n(t)\leq y_n(t) \leq\cdots \leq y_1(t)\leq y_0(t),~~t\in J. \end{array}$$

Hence, {yn} and {zn} converge uniformly on J to limit functions y, zC1(J,ℝ).

Indeed, y, z are the quasisolutions of problem (1). This ends the proof.

Illustrative example

In this section, we give the following example to demonstrate the validity of assumptions and theoretical results.

Example 9

Consider the problem

{cDαx(t)=M(t)x(t)M(t)[1cos(x(12t))]t0ts2x(s)ds,0=ex(0)x(1)32,$$\begin{array}{} \displaystyle \left\{\begin{array}{*{20}{c}} {c{D^\alpha }x(t) = - M(t)x(t) - M(t)\left[ {1 - \cos \left( {x\left( {\frac{1}{2}t} \right)} \right)} \right] - t\int_0^t {{s^2}x(s)ds,} } \hfill \\ {0 = {e^{x(0)}} - x(1) - \frac{3}{2},} \hfill \\ \end{array}\right. \end{array}$$

where M(t) ∊ C(J,[0,∞),tJ = [0,1], andQ(t)=M(t)x(t)+M(t)[1cos(x(12t))]t0ts2x(s)ds$\begin{array}{} Q(t) = - M(t)x(t) + M(t)\left[ {1 - \cos \left( {x\left( {\frac{1}{2}t} \right)} \right)} \right] - t\int_0^t {{s^2}x(s)ds} \end{array}$.

Put y0(t) = 0, z0(t) = γ with1γπ2$\begin{array}{} 1\leq \gamma \leq \frac{\pi}{2} \end{array}$. Then

(Qy0)(t)=0=cDαx(t),(Qz0)(t)=0=M(t)γ+M(t)(1cosγ)γt43M(t)(1γ)0=cDαz0(t),g(y0(0),y0(1))=120,g(z0(0),z0(1))=eγγ320.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {(Q{y_0})(t) = 0{ = ^c}{D^\alpha }x(t),} \\ {(Q{z_0})(t) = 0 = - M(t)\gamma + M(t)(1 - \cos \gamma ) - \gamma \frac{{{t^4}}}{3} \le M(t)(1 - \gamma ) \le 0{ = ^c}{D^\alpha }{z_0}(t),} \\ {g({y_0}(0),{y_0}(1)) = - \frac{1}{2} \le 0,} \\ {g({z_0}(0),{z_0}(1)) = {e^\gamma } - \gamma - \frac{3}{2} \ge 0.} \\ \end{array} \end{array}$$

It means that y0, z0are lower and upper solutions of problem (18), respectively. If we also assume that

suptJ{1Γ(α)0t(ts)α1I01α[e0sM(τ)dτs0sξ2e0ξM(τ)dτdξ](s)ds}1.$$\begin{array}{} \displaystyle \sup \limits_{t\in J}\bigg\{\frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha-1}I^{1-\alpha}_0[e^{\int_{0}^{s}M(\tau)d\tau}s\int_0^s{\xi}^2e^{-\int_0^{\xi}M(\tau)d\tau}d\xi](s)ds\bigg\}\leq 1. \end{array}$$

Then, the problem has extremal solutions.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics