Open Access

The Laurentian Neoproterozoic Glacial Interval: reappraising the extent and timing of glaciation


Cite

Agassiz, L., 1840, Études sur les glaciers. Neuchâtel. Jent et Gassmann.10.5962/bhl.title.151173Search in Google Scholar

Aleinikoff, J.N., Zartman, R.E., Walter, M., Rankin, D.W., Lyttle, P.T., Burton, W.C., 1995. U-Pb ages of metarhyolites of the Catoctin and Mount Rogers Formation, central and southern Appalachians: evidence for two pulses of Iapetan Rifting. American Journal of Science, 295, 428-454. https://doi:10.2475/ajs.295.4.42810.2475/ajs.295.4.428Search in Google Scholar

Ali, D.O., Spencer, A.M., Fairchild, I.J., Chew, K.J., Anderton, R., Levell, B.K., Hambrey, M.J., Dove, D., Le Heron, D.P., 2018. Indicators of relative completeness of the glacial record of the Port Askaig Formation, Garvellach Islands, Scotland. Precambrian Research, 319, 69-78. https://doi.org/10.1016/j.precamres.2017.12.00510.1016/j.precamres.2017.12.005Search in Google Scholar

Ali, K.A., Stern, R.J., Manton, W.I., Kimura, J.I., Khamees, H.A., 2009. Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from Central Eastern Desert of Egypt: New insights into the ~750 Ma crust-forming events. Precambrian Research, 171, 1-22. https://doi.org/10.1016/j.precamres.2009.03.00210.1016/j.precamres.2009.03.002Search in Google Scholar

Ali, K.A., Stern, R.J., Manton, W.I., Johnson, P.R., Mukherjee, S.K., 2010. Neoproterozoic diamictite in the Eastern Desert of Egypt and Northern Saudi Arabia: Evidence of ~750 Ma glaciation in the Arabian-Nubian Shield? International Journal of Earth Sciences, 99, 705-726. https://doi.org/10.1007/s00531-009-0427-310.1007/s00531-009-0427-3Search in Google Scholar

Allen, P.A., Etienne, J.L., 2008. Sedimentary challenge to Snowball Earth: Nature Geoscience, 1, 817–825. https://doi.org/10.1038/ngeo35510.1038/ngeo355Search in Google Scholar

Arnaud, E., 2004. Giant cross-beds in the Neoproterozoic Port Askaig Formation, Scotland: Implications for snowball Earth. Sedimentary Geology, 165, 155-174. https://doi.org/10.1016/j.sedgeo.2003.11.01510.1016/j.sedgeo.2003.11.015Search in Google Scholar

Babinski, M., Vieira, L.C., Trindade, R.I.F., 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova, 19, 401-406. https://doi.org/10.1111/j.1365-3121.2007.00764.x10.1111/j.1365-3121.2007.00764.xSearch in Google Scholar

Barfod, G.H., Albarede, F., Knoll, A.H., Xiao, S., Télouk, P., Frei, P., J., 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201, 203-212. https://doi.org/10.1016/S0012-821X(02)00687-810.1016/S0012-821X(02)00687-8Search in Google Scholar

Borg, G., Kärner, K., Buxton, M., Armstrong, R., Merwe, S.W.V.D., 2003. Geology of Skorpion supergene zinc deposit Southern Namibia. Economic Geology, 98, 749-771. https://doi.org/10.2113/gsecongeo.98.4.74910.2113/gsecongeo.98.4.749Search in Google Scholar

Bowring, S.A., Grotzinger, J.P., Condon, D.J., Ramezani, J., Newall, M.J., Allen, P.A., 2007. Geochronological constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307, 1097-1145. https://doi.org/10.2475/10.2007.0110.2475/10.2007.01Search in Google Scholar

Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P.A., Shields, G., 2000. New U-PB zircon ages for the Neoproterozic Ghubrah glaciations and for the top of the Huqf Supergroup, Oman. Geology, 28, 175-178. https://doi.org/10.1130/0091-7613(2000)28<175:NUZDFT>2.0.CO;210.1130/0091-7613(2000)28<175:NUZDFT>2.0.CO;2Search in Google Scholar

Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Hallmann, C., Hoshino, Y., Liyange, T., 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548, 578-581. https://doi.org/10.1038/nature2345710.1038/nature23457Search in Google Scholar

Busfield, M.E., Le Heron, D.P., 2014. Sequencing the Sturtian icehouse: dynamic ice behavior in South Australia. Journal of the Geological Society of London 171, 443–456. https://doi.org/10.1144/jgs2013-06710.1144/jgs2013-067Search in Google Scholar

Busfield, M.E., Le Heron, D.P., 2016. A Neoproterozoic ice advance sequence, Sperry Wash, California. Sedimentology, 63, 307-330. https://doi.org/10.1111/sed.1221010.1111/sed.12210Search in Google Scholar

Busfield, M.E., Le Heron, D.P., 2018. Snowball Earth under the microscope. Journal of Sedimentary Research, 88, 659-677. https://doi.org/10.2110/jsr.2018.3410.2110/jsr.2018.34Search in Google Scholar

Calver, C.R., Black, L.P., Everard, J.L., Seymour, D.B., 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32, 893-896. https://doi.org/10.1130/G20713.110.1130/G20713.1Search in Google Scholar

Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., Raub, T.D., Schmitz, M.D., 2013. Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia. Geology, 41, 1127-1130. https://doi.org/10.1130/G34568.110.1130/G34568.1Search in Google Scholar

Chen, D.F., Dong, W.Q., Zhu, B.Q., Chen, X.P., 2004. Pb-Pb ages of the Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glacial events. Precambrian Research, 132, 123-132. https://doi.org/10.1016/j.precamres.2004.02.00510.1016/j.precamres.2004.02.005Search in Google Scholar

Coleman, A.P., 1926. Ice Ages: Recent and Ancient. Macmillan, London, 296 pp. https://doi.org/10.1038/118293a010.1038/118293a0Search in Google Scholar

Colpron, M., Logan, J.M., Mortensen, J.K., 2002. U-Pb zircon age constraints for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Canadian Journal of Earth Sciences, 39, 133-143. https://doi.org/10.1139/e01-06910.1139/e01-069Search in Google Scholar

Condon, D.J., Prave, A.R., Benn, D.I., 2002. Neoproterozoic glacial-rainout intervals: Observations and implications. Geology, 30, 35–38. https://doi.org/10.1130/0091-7613(2002)030<0035:NGRIOA>2.0.CO;210.1130/0091-7613(2002)030<0035:NGRIOA>2.0.CO;2Search in Google Scholar

Condon, D.J., Zhu, M., Bowring, S., Wang, W., Yang, A., Jin, Y., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation. Chin. Sci., 308, 95-98. https://doi/10.1126/science.110776510.1126/science.1107765Search in Google Scholar

Condon, D.J., Bowring, S.A., 2011. Chapter 9: A user’s guide to Neoproterozoic geochronology. Geological Society of London, Memoirs, 36, 135-149. https://doi.org/10.1144/M36.910.1144/M36.9Search in Google Scholar

Cox, G.M., Strauss, J.V., Halverson, G.P., Schmitz, M.D., Mc-Clelland, W.C., Stevenson, R.S., Macdonald, F.A., 2015. Kikiktat volcanics of Arctic Alaska-Melting of harzburgitic mantle associated with the Franklin Large Igneous Province. Lithosphere, 7, 275-295. https://doi/10.1130/L435.110.1130/L435.1Search in Google Scholar

Cox, G.M., Isakson, V., Hoffman, P.F., Gernon, T.M., Schmitz, M.D., Shahin, S., Collins, A.S., Preiss, W., Blades, M.L., Mitchell, R.N., Nordsvan, A., 2018. South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 315, 257-263. https://doi.org/10.1016/j.precamres.2018.07.00710.1016/j.precamres.2018.07.007Search in Google Scholar

Creveling, J. R., Bergmann, K. D., Grotzinger, J. P., 2016. Cap carbonate platform facies model, Noonday Formation, SE California. Geological Society of America Bulletin, 128, 1249-1269.10.1130/B31442.1Search in Google Scholar

DeLucia, M.S., Guenthner, W.R., Marshak, S., Thomson, S.N., Ault, A.K., 2018. Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth. Geology, 46, 167–170. https://doi.org/10.1130/G39525.110.1130/G39525.1Search in Google Scholar

Dempster, T.J., Rogers, G., Tanner, P.W.G., Bluck, B.J., Muir, R.J., Redwood, S.D., Ireland, T.R., Paterson, B.A., 2002. Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland; constraints from U-Pb zircon ages. Journal of the Geological Society of London, 159, 83-94. https://doi.org/10.1144/0016-76490106110.1144/0016-764901061Search in Google Scholar

Denyszyn, S.W., Davis, D.W., Hall, H.C., 2009. Paleomagnetisum and U-Pb geochronology of the Clarence Head dykes, Artic Canada: Orthogonal emplacement of mafic dykes in a large igneous province. Canadian Journal of Earth Sciences, 46, 155-167. https://doi.org/10.1139/E09-01110.1139/E09-011Search in Google Scholar

Dubreuilh, J.M., Platel, P., Le Metour, J., Roger, J., Wyns, R., Bechennec, F., Berthiaux, A., 1992. Geological map of Khaluf, 1: 250 000, sheet NF 40-15. Bureau de Recherches géologiques et minières, Orléans, France.Search in Google Scholar

Evans, D.A.D., 2000, Stratigraphic, Geochronological, and Paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science, 300, 347-433. https://doi/10.2475/ajs.300.5.34710.2475/ajs.300.5.347Search in Google Scholar

Evenchick, C.A., Parrish, R.R., Gabrielse, H., 1984. Precambrian gneiss and Proterozoic sedimentation in north-central British Columbia. Geology, 12, 233-237. https://doi.org/10.1130/0091-7613(1984)12<233:PGALPS>2.0.CO;210.1130/0091-7613(1984)12<233:PGALPS>2.0.CO;2Search in Google Scholar

Eyles, N., Januszczak, N., 2004. ‘Zipper-rift’: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65, 1–73. https://doi.org/10.1016/S0012-8252(03)00080-110.1016/S0012-8252(03)00080-1Search in Google Scholar

Fanning, C.M., Link, P.K., 2004. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 10, 881-884. https://doi.org/10.1130/G20609.110.1130/G20609.1Search in Google Scholar

Ferri, F., Rees, C.J., Nelson, J.L., Legun, A.S., 1999. Geology and mineral deposits of the northern Kechika Trough between Gataga River and the 60th parallel. British Columbia Ministry of Energy and Mines, Bulletin, 107, 1-22.Search in Google Scholar

Fetter, A.H., Goldberg, S.A., 1995. Age and geochemical characteristics of the bimodal magmatism in the Neoproterozoic Grandfather Mountain rift basin. Journal of Geology, 103, 313-326. https://doi/10.1086/62974910.1086/629749Search in Google Scholar

Frimmel, H.E., Klötzli, U.S., Siegfried, P.R., 1996. New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. Journal of Geology, 104, 459-469. http://doi/10.1086/62983910.1086/629839Search in Google Scholar

Frimmel, H.E., Zartman, R.E., Späth, A., 2001. The Rich-tersveld Igneous Complex, South Africa: U-Pb Zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup. Journal of Geology, 109, 493-508. https://doi.org/10.1086/32079510.1086/320795Search in Google Scholar

Gorin, G.E., Racz, L.G., Walter, M.R., 1982. Late Precambian-Cambrian sediments of the Huqf Group, Sultanate of Oman. American Association of Petroleum Geologists Bulletin, 66, 2609-2627.10.1306/03B5AC82-16D1-11D7-8645000102C1865DSearch in Google Scholar

Halliday, A.N., Graham, C.M., Aftalion, M., Dymoke, P., 1989. The depositional age of the Dalradian Supergroup; U-Pb and Sm-Nd isotopic studies of the Tayvallich Volcanics, Scotland. Journal of the Geological Society of London, 146, 3-6. https://doi.org/10.1144/gsjgs.146.1.000310.1144/gsjgs.146.1.0003Search in Google Scholar

Halverson, G.P., Wade, B.P., Hurtgen, M.T., Barovich, K.M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350. https://doi/10.1016/j.precamres.2010.04.00710.1016/j.precamres.2010.04.007Search in Google Scholar

Harland, W.B., 1964. Critical evidence for a great infra-Cambrian glaciation. Geologisches Rundschau, 54, 45–61. https://doi.org/10.1007/BF0182116910.1007/BF01821169Search in Google Scholar

Heaman, L.M., Le Cheminant, A.N., Rainbird, R.H., 1992. Nature and timing of the Franklin igneous events Canada: implications for a late Proterozoic mantle plume and break up of Laurentia. Earth and Planetary Science Letters, 109, 117-131. https://doi.org/10.1016/0012-821X(92)90078-A10.1016/0012-821X(92)90078-ASearch in Google Scholar

Hoffman, P.F., 2011. A history of Neoproterozoic glacial geology, 1871–1997. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 17–37. https://doi.org/10.1144/M36.210.1144/M36.2Search in Google Scholar

Hoffman, P.F., Hawkins, D.P., Isachsen, C.E., Bowring, S.A., 1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas mountains and Welwitschia inlier, northern Damara belt Namibia. Communications of the Geological Survey of Namibia, 11, 47-52.Search in Google Scholar

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic Snowball Earth. Science, 281, 1342–1346. 10.1126/science.281.5381.134210.1126/science.281.5381.1342Search in Google Scholar

Hoffman, P.F., Schrag, D.P., 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129–155. 10.1046/j.1365-3121.2002.00408.x10.1046/j.1365-3121.2002.00408.xSearch in Google Scholar

Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., Fairchild, I.J., Ferreira, D., Goodman, J.C., Halverson, G.P., Jansen, M.F., Le Hir, G., Love, G.D., Macdonald, F.A., Maloof, A.C., Partin, C.A., Ramstein, G., Rose, B.E.J., Rose, C.V., Sadler, P.M., Tziperman, E., Voigt, A., Warren, S.G., 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3 (11), e1600983. https://doi/0.1126/sciadv.160098310.1126/sciadv.1600983Search in Google Scholar

Fairchild, I.J., Kennedy, M.J., 2007. Neoproterozoic glaciation in the Earth System. Journal of the Geological Society, London, 164, 895–921. https://doi.org/10.1144/0016-76492006-19110.1144/0016-76492006-191Search in Google Scholar

Ireland, T.R., Flöttmann, T., Fanning, C.M., Gibson, G.M., Preiss, W.V., 1998. Development of the early Palaeozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogeny. Geology, 26, 243-246. https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;210.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2Search in Google Scholar

Jefferson, C.W., Parrish, R.R., 1989. Late Proterozoic stratigraphy, U-Pb zircon ages, and rift tectonics, Mackenzie Mountains, northwestern Canada. Canadian Journal of Earth Science, 26, 1784-1801. https://doi.org/10.1139/e89-15110.1139/e89-151Search in Google Scholar

Kalstrom, K.E., Bowring, S.A., Dehler, C.M., Knoll, A.H., Porter, S.M., Marais, D.J.D., Weil, A.B., Sharp, Z.D., Geissman, J.W., Elrick, M.B., Timmons, J.M., Crossey, L.J., Davidek, K.L., 2000. Chuar Group of the Grand Canyon: Record of breakup of Rodina, associated changes in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28, 619-622. https://doi/10.1130/0091-7613(2000)28<619:cgotgc>2.0.co;210.1130/0091-7613(2000)028<0619:CGOTGC>2.3.CO;2Search in Google Scholar

Kaye, C.A., Zartman, R.E., 1980. A Late Proterozoic to Cambrian age for the stratified rocks of the Boston Basin, Massachusetts, USA. In: Wones, D.R. (ed.), The Caledonides in the USA. Virginia Polytechnic Institute and State University Memoir, 2, 257-261.Search in Google Scholar

Keeley, J.A., Link, P.K., Fanning, C.M., Schmitz, M.D., 2013. Pre- to synglacial rift-related volcanism in the Neoproterozoic (Cryogenian) Pocatello Formation, SE Idaho: New SHRIMP and CA-ID TIMS constraints. Lithosphere, 5, 128-150. https://doi.org/10.1130/L226.110.1130/L226.1Search in Google Scholar

Kendall, B.S., Creaser, R.A., Ross, G., Selby, D., 2004. Constraints on the timing of Marinoan “snowball Earth” glaciation by 187Re-187Os dating of a Neoproterozoic post glacial black shale in western Canada. Earth and Planetary Science Letters, 222, 729-740. https://doi.org/10.1016/j.epsl.2004.04.00410.1016/j.epsl.2004.04.004Search in Google Scholar

Kendall, B., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciations. Geology, 34, 729-732. https://doi.org/10.1130/G22775.110.1130/G22775.1Search in Google Scholar

Kendall, B., Creaser, R.A., Calver, C.R., Raub, T.B., Evans, D.A.D., 2009. Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re-Os black shale geochronology and the ambiguity of “Sturtian”-type diamictite-cap carbonate pairs as chronostrati-graphic maker horizons. Precambrian Research, 172, 301-310. https://doi.org/10.1016/j.precamres.2009.05.00110.1016/j.precamres.2009.05.001Search in Google Scholar

Kennedy, K., Eyles, N., Broughton, D., 2018. Basinal setting and origin of thick (1.8 km) mass flow dominated Grand Conglomérat diamictites, Kamoa, Democratic Republic of Congo: Resolving climate and tectonic controls during Neoproterozoic glaciations. Sedimentology, 66, 556-589. https://doi.org/10.1111/sed.1249410.1111/sed.12494Search in Google Scholar

Kennedy, K., Eyles, N., 2019. Subaqueous debrites of the Grand Conglomérat Formation, Democratic Republic of Congo: a model for anomalously thick Neoproterozoic ‘glacial’ diamictites. Journal of Sedimentary Research, 89, 1-21. https://doi.org/10.2110/jsr.2019.5110.2110/jsr.2019.51Search in Google Scholar

Kennedy, K., Eyles, N., 2020, Tectonically-generated debris flows and related mass-flow ‘tectonofacies’ of the Neoproterozoic Kingston Peak Formation, Death Valley California. Sedimentology in press.Search in Google Scholar

Key, R.M., Liyungu, A.K., Njamu, F.M., Somwe, V., Banda, J., Mosley, P.N., Armstrong, R.A., 2001. The western arm of Lufilian Arc in Zambia and its potential for copper mineralization. Journal of African Earth Science, 33, 503-528. https://doi.org/10.1016/S0899-5362(01)00098-710.1016/S0899-5362(01)00098-7Search in Google Scholar

Kirschvink, J.L., 1992. Late Proterozoic low-latitude glaciation: The snowball Earth. In: Schopf, J.W., Klein, C. (eds.), The Proterozoic biosphere. Cambridge University Press, Cambridge, 51–52.Search in Google Scholar

Krogh, T.E., Strong, D.F., O’Brien, S.J., Papezik, V.S., 1988. Precise U-Pb zircon dates from the Avalon Terrane in Newfoundland. Canadian Journal of Earth Sciences, 25, 442-453. https://doi.org/10.1139/e88-04510.1139/e88-045Search in Google Scholar

Kröner, A., 1977. Non-synchroneity of late Precambrian glaciations in Africa. Journal of Geology, 85, 289-300. https://doi.org/10.1086/62830010.1086/628300Search in Google Scholar

Lahondère, D., Roger, J., Le Métour, J., Donzeau, M., Guillocheau, F., Helm, C., Thiéblemont, D., Cocherie, A., Guerrot, C., 2005. Notice explicative des cartes géologiques à 1/200.00 et 1/500,000 de ľ extrème sud de la Mauritanie. DMG, Ministère des mines et de ľindustrie, Nouakchott, Rapport BRGM/RC-54273-FR, 610.Search in Google Scholar

Lan, Z., Li, X., Zhu, M., Chen, Z.-Q., Zhang, Q., Li, Q., Lu, D., Liu, Y., Tang, G., 2014. A rapid and synchronous initiation of the widespread Cryogenian glaciations. Precambrian Research, 255, 401-411. http://doi/10.1016/j.precamres.2014.10.01510.1016/j.precamres.2014.10.015Search in Google Scholar

Leather, J., Allen, P.A., Brasier, M.D., Cozzi, A., 2002. Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman. Geology, 30, 891–894. https://doi.org/10.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;210.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;2Search in Google Scholar

Le Heron, D.P., Vandyk, T., 2019. A slippery slope for Cryogenian diamictites? The Depositional Record, 5, 306-321. https://doi.10.1002/dep2.6710.1002/dep2.67Search in Google Scholar

Le Heron, D.P., Cox, G.M., Trundley, A.E., Collins, A. 2011. Sea ice free conditions during the Sturtian glaciation (early Cryogenian), South Australia. Geology, 39, 31–34. https://doi.org/10.1130/G31547.110.1130/G31547.1Search in Google Scholar

Le Heron, D.P., Busfield, M.E., Kamona, A.F., 2013. Interglacial on snowball Earth? Dynamic ice behaviour revealed in the Chuos Formation, Namibia. Sedimentology, 60, 411–427. https://doi.org/10.1111/j.1365-3091.2012.01346.x10.1111/j.1365-3091.2012.01346.xSearch in Google Scholar

Le Heron, D.P., Tofaif, S., Vandyk, T., Ali, D.O., 2017. A diamictite dichotomy: glacial conveyor belts and olistostromes in the Neoproterozoic of Death Valley, California, USA. Geology, 45, 31–34. https://doi.org/10.1130/G38460.110.1130/G38460.1Search in Google Scholar

Le Heron, D.P., Busfield, M.E., Ali, D.O., Al Tofaif, S., Vandyk, T.M. 2018. The Cryogenian record in the southern Kingston Range, California: the thickest Death Valley succession in the hunt for a GSSP. Precambrian Research, 319, 158-172. https://doi.org/10.1016/j.precamres.2017.07.01710.1016/j.precamres.2017.07.017Search in Google Scholar

Le Heron, D.P., Busfield, M.E., Ali, D.O., Vandyk, T., Tofaif, S., 2019. A tale of two rift shoulders, and two ice masses: the Cryogenian glaciated margin of Death Valley, California. In: Le Heron, D.P., Hogan, K.A., Phillips, E.R., Huuse, M., Bus-field, M.E. Graham, A.G.C. (eds.), Glaciated Margins: The Sedimentary and Geophysical Archive. Geological Society, London, Special Publications, 475, 35-52. https://doi.org/10.1144/SP475.1110.1144/SP475.11Search in Google Scholar

Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton South China and correlation with other continents: evidence for mantle superplume that broke up Rodinia. Precambrian Research, 122, 85-109. https://doi.org/10.1016/S0301-9268(02)00208-510.1016/S0301-9268(02)00208-5Search in Google Scholar

Li, Z.-X., Evans, D.A.D., Halverson, G.P., 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwana-land. Sedimentary Geology, 294, 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.01610.1016/j.sedgeo.2013.05.016Search in Google Scholar

Lund, K., Aleinikoff, J.N., Evans, K.V., Fanning, C.M., 2003. SHRIMP U-Pb geochronology of Neoproterozoic Winder-mere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geological Society of American Bulletin, 115, 349-372. https://doi.org/10.1130/0016-7606(2003)115<0349:-SUPGON>2.0.CO;210.1130/0016-7606(2003)115<0349:SUPGON>2.0.CO;2Search in Google Scholar

Link, P.K., Christie-Blick, N., Devlin, W.J., Elston, D.P., Horodyski, R.J., Levy, M., Miller, J.M.G., Pearson, R.C., Prave, A., Stewart, J.H., Winston, D., Wright, L.A., Wrucke, C.T., 1993. Middle and late Proterozoic stratified rocks of the western U.S. Cordillera, Colorado Plateau and Basin Range Province. In Reed, J.C., et al. (eds.), Precambrian: Coterminous U.S. Geology of North America, v. C-2, 463-595. Geological Society of America, Boulder, Colorado. https://doi.org/10.1130/DNAG-GNA-C2.46310.1130/DNAG-GNA-C2.463Search in Google Scholar

Ma, G., Lee, H., Zhang, Z., 1984. An investigation of the limits of the Sinian system in South China, Bulletin of the Yichang Institute of Geology and Mineral Resources. Chin., Acad., Geol. Sci., 8, 1-29.Search in Google Scholar

Macdonald, F.A., Schmitz, M.D., Crowley, J.L., Roots, C.F., Jones, D.S., Maloof, A.C., Strauss, J.V., Cohen, P.A., Johnston, D.T., Schrag, D.P., 2010. Calibrating the Cryogenian. Science, 327, 1241-1243. https://doi/10.1126/science.118332510.1126/science.118332520203045Search in Google Scholar

Mawson, D., 1949. The Elatina glaciation. A third occurrence of glaciation evidenced in the Adelaide System. Transactions of the Royal Society of South Australia, 73, 117–121.Search in Google Scholar

Mawson, D., Sprigg, R. C., 1950. Subdivision of the Adelaide System. Australian Journal of Science, 13, 69–72.Search in Google Scholar

McDonough, M.R., Parrish, R.R., 1991. Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U-Pb ages and Nd isotopic signatures. Canadian Journal of Earth Science, 23, 1202-1216. https://doi.org/10.1139/e91-10810.1139/e91-108Search in Google Scholar

MacLennan, S., Park, Y., Swanson-Hysell, N., Maloof, A., Schoene, B., Gebreslassie, M., Antilla, E., Tesema, T., Alene, M., Haileab, B., 2018. The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation. Geology, 46, 539–542. https://doi.org/10.1130/G40171.110.1130/G40171.1Search in Google Scholar

Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., Müller, R.D., 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research 50, 84-134. https://doi.org/10.1016/j.gr.2017.04.00110.1016/j.gr.2017.04.001Search in Google Scholar

Miller, N.R., Alene, M., Sacchi, R., Stern, R.J., Conti, A., Kröner, A., Zuppi, G., 2003. Significance of the Tambien Group (Tigrai, N. Ethiopia) for Snowball Earth Events in the Arabian-Nubian Shield. Precambrian Research, 121, 263-283. https://doi.org/10.1016/S0301-9268(03)00014-710.1016/S0301-9268(03)00014-7Search in Google Scholar

Partin, C.A., Sadler, P.M., 2016. Slow net sediment accumulation sets snowball Earth apart from all younger glacial episodes. Geology, 44, 1019–1022. https://doi.org/10.1130/G38350.110.1130/G38350.1Search in Google Scholar

Powell, R.D., Cooper, J.M., 2002. A glacial sequence strati-graphic model for temperate, glaciated continental shelves. In: Dowdeswell, J.A., O’Cofaigh, C. (eds.), Glacier-influenced sedimentation on high-latitude continental margins. Geological Society of London, Special Publication, 203, 215–244. https://doi.org/10.1144/GSL.SP.2002.203.01.1210.1144/GSL.SP.2002.203.01.12Search in Google Scholar

Prave, A. R., 1999. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27, 339-324. https://doi.org/10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;210.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2Search in Google Scholar

Preiss, W.V., 1987, (ed.). The Adelaide Geosyncline-late Proterozoic stratigraphy, sedimentation, paleontology and tectonics: South Australia Geology Survey Bulletin, 53, 438.Search in Google Scholar

Preiss, W.V., Drexel, J.F. Reid, A.J., 2009. Definition and age of the Kooringa Member of the Skillogalee Dolomite: host for Neoproterozoic (c. 790 Ma) porphyry-related copper mineralisation at Burra. MESA Journal, 55, 19-33.Search in Google Scholar

Preiss, W.V., Gostin, V.A., McKirdy, D.M., Ashley, P.M., Williams, G.E., Schmidt, P.W., 2011. The glacial succession of Sturtian age in South Australia: the Yudnamutana Subgroup. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 701-712. https://doi.org/10.1144/M36.6910.1144/M36.69Search in Google Scholar

Rooney, A.D., Chew, D.M., Selby, D., 2011. Re-Os Geo-chronology of the Neoproterozoic Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematics. Precambrian Research, 185, 202-214. https://doi.org/10.1016/j.precamres.2011.01.00910.1016/j.precamres.2011.01.009Search in Google Scholar

Rooney, A.D., Macdonald, F.A., Strauss, J.V., Dudás, F.Ö., Hall-mann, C., Selby, D., 2014. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proceedings of the National Academy of Science, 111, 51-56. https://doi.org/10.1073/pnas.131726611010.1073/pnas.1317266110Search in Google Scholar

Rooney, A.D., Strauss, J.V., Brandon, A.D. Macdonald, F.A., 2015. A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology, 43, 459–462. https://doi.org/10.1130/G36511.110.1130/G36511.1Search in Google Scholar

Ross, G.M., Villeneuve, M.E., 1997. U-Pb geochronology of stranger stones in Neoproterozoic diamictites, Canadian Cordillera: implications for provenance and age of deposition. Geological Survey of Canada, Current Research 1997-F, 141-155. https://doi/10.4095/20910010.4095/209100Search in Google Scholar

Schaefer, B.F., Burgess, J.M., 2003. Re-Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the “snowball Earth”. Journal of the Geological Society of London 160, 825-828. https://doi.org/10.1144/0016-764903-05010.1144/0016-764903-050Search in Google Scholar

Shields, G.A., Halverson, G.P., Porter, S.M., 2018. Descent into the Cryogenian. Precambrian Research, 319, 1-5. https://doi.org/10.1016/j.precamres.2018.08.01510.1016/j.precamres.2018.08.015Search in Google Scholar

Strauss, J.V., Rooney, A.D., Macdonald, F.A., Brandon, A.D., Knoll, A.H., 2014. 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy: Geology, 42, 659-662. https://doi.org/10.1130/G35736.110.1130/G35736.1Search in Google Scholar

Spence, G.H., Le Heron, D.P., Fairchild, I.J., 2016. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63, 253-306. https://doi.org/10.1111/sed.1226110.1111/sed.12261Search in Google Scholar

Tadesse, T., Hoshimo, M., Suzuki, K., Iizumi, S., 2000. Sm-Nd, Rb-Sr and Th-U-Pb zircon ages of syn- and post-tectonic granitoids from the Axum area of Northern Ethiopia. Journal of Africa Earth Sciences, 30, 313-327. https://doi.org/10.1016/S0899-5362(00)00022-110.1016/S0899-5362(00)00022-1Search in Google Scholar

Thompson, M.D., Bowring, S.A., 2000. Age of the Squantum “tillite”, Boston Basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300, 630-655. 10.2475/ajs.300.8.63010.2475/ajs.300.8.630Search in Google Scholar

Tofaif, S., Vandyk, T., Le Heron, D.P., Melvin, J. 2019. Glaciers, flows, and fans: Origins of a Neoproterozoic diamictite in the Saratoga Hills, Death Valley, California. Sedimentary Geology, 385, 79-95. https://doi.org/10.1016/j.sedgeo.2019.03.00310.1016/j.sedgeo.2019.03.003Search in Google Scholar

Tollo, R.P., Aleinkoff, J.N., 1996. Petrology and U-Pb geo-chronology of the Robertson River igneous suite, Blue Ridge Province, Virginia- evidence for multistage magmatism associated with an early episode of Laurentian rifting. American Journal of Science, 296, 1045-1090. https://doi/10.2475/ajs.296.9.104510.2475/ajs.296.9.1045Search in Google Scholar

Williams, G.E., Gostin, V.A., McKirdy, D.M., Preiss, W.V., Schmidt, P.W., 2011. The Elatina glaciation (late Cryogenian), South Australia. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 713–721. https://doi.org/10.1144/M36.7010.1144/M36.70Search in Google Scholar

Xu, B., Jang, P., Zheng, H., Zou, H., Zhang, L., Liu, D., 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwestern China: Implications for the break up of Rodinia supercontinent and glaciations: Precambrian Research, 136, 107-123. https://doi.org/10.1016/j.precamres.2004.09.00710.1016/j.precamres.2004.09.007Search in Google Scholar

Xu, B., Xiao, S., Chen, Y., Li, Z-X., Song, B., Liu, D., Zhou, C., Yuan, X., 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China, Precambrian Research, 168, 247-258. https://doi.org/10.1016/j.precamres.2008.10.00810.1016/j.precamres.2008.10.008Search in Google Scholar

Yang, J., Xue, Y., Tao, X., 1994, Sm-Nd radiometric dating of the Doushantuo Formation, south China. Chinese Science Bulletin, 39, 65-68.10.1360/csb1994-39-1-65Search in Google Scholar

Yin, C., Tang, F., Liu, Y., Gao, L., Yang, Z., Wang, Z., Liu, P., Xing, Y., Song, B., 2005. New U-Pb zircon ages from the Ediacaran (Sinian) System in the Yangtze Gorges: Constraints on the age of Miaohe biota and Marinoan glaciation. Geological Bulletin of China, 24, 393-400.Search in Google Scholar

Yin, C., Tang, F., Liu, Y., Gao, L., Liu, P., Xing, Y., Yang, Z., Wan, Y., Wang, Z., 2005. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes, 28, 48-49.10.18814/epiiugs/2005/v28i1/006Search in Google Scholar

Zhang, Q.R., Li, X.H., Feng, L.J., Huang, J., Song, B., 2008. A new constraint on the onset of Neoproterozoic glaciations in the Yangtze platform, South China. Journal of Geology, 116, 423-429.10.1086/589312Search in Google Scholar

Zhang, S., Jiang, G., Song, B., Kennedy, M.J., Christie-Blick, N., 2005. U-Pb sensitive high resolution ion microprobe ages from the Doushantuo Formation in China: constraints on late Neoproterozoic glaciations. Geology, 33, 473-476.10.1130/G21418.1Search in Google Scholar

Zhang, S., Jiang, G., Han, Y., 2008. The age of the Nantuo Formation and Nantuo glaciation in south China. Terra Nova, 20, 289-294.10.1111/j.1365-3121.2008.00819.xSearch in Google Scholar

Zhang, S.H., Jiang, G.Q., Dong, J., Han, Y.G., Wu, H.C., 2008. New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: Implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian) glaciation in south China. Science in China Series D: Earth Sciences, 51, 1537-1544.10.1007/s11430-008-0119-zSearch in Google Scholar

Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., Chen, Z., 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32, 437-440.10.1130/G20286.1Search in Google Scholar

Zhou, C., Huyskens, M.H., Lang, X., Xiao, S., Yin, Q.-Z., 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47, 251–254.10.1130/G45719.1Search in Google Scholar

eISSN:
2072-7151
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, Geology and Mineralogy, other