Open Access

Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture


Cite

1. ASTM E647-08e1. (2008) Standard Test Method for Measurement of Fatigue Crack Growth Rates.Search in Google Scholar

2. Carlson, R. L., Kardomateas, G. A. (1994) Effects of compressive load excursions on fatigue crack growth. International Journal of Fatigue, 16(2), 141-146. DOI: 10.1016/0142-1123(94)90104-X10.1016/0142-1123(94)90104-XSearch in Google Scholar

3. Černý, I., Linhart, V. (2013) Effects of different microstructure on resistance of EA4T railway axle steel of equal strength to fatigue crack growth. Key Engineering Materials, 592-593, 631-634. DOI:10.4028/www.scientific.net/KEM.592-593.63110.4028/www.scientific.net/KEM.592-593.631Search in Google Scholar

4. Elwazri, A. M., Wanjara, P., Yue, S. (2005) The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Materials Science and Engineering: A, 404 (1-2), 91-98. DOI:10.1016/j.msea.2005.05.05110.1016/j.msea.2005.05.051Search in Google Scholar

5. GOST 31334-2007. Osi dlya podvizhnogo sostava zheleznyh dorog kolei 1520 mm. Tehnicheskie usloviya [Axles for rolling stock of 1520 mm gauge railways. Specifications]. (in Russian).Search in Google Scholar

6. Larijani, N., Brouzoulis, J., Schilke, M., Ekh, M. (2014) The effect of anisotropy on crack propagation in pearlitic rail steel. Wear, 314(1-2), 57-68. DOI:10.1016/j.wear.2013.11.03410.1016/j.wear.2013.11.034Search in Google Scholar

7. Levchenko, G. V., Dyomina, E. G., Nefedyeva, E. E., Buga, I. D., Antonov, Yu. G., Medinskiy, G. A. (2010) Effect of billet strained condition on microstructure homogeneity of railway axles. Metallurgical and Mining Industry, 2(3), 207-214.Search in Google Scholar

8. Maruschak, P. O., Baran, D. Ya., Sorochak, A. P., Bishchak, R. T., Yasnii, V. P. (2012) Cyclic crack resistance and micromechanisms of fracture of steel 25Kh1M1F. Strength of Materials, 44(4), 410-418. DOI:10.1007/s11223-012-9395-010.1007/s11223-012-9395-0Search in Google Scholar

9. Maruschak, P. O., Sorochak, A. P., Menou, A., Maruschak, O. V. (2013) Regularities in macro- and micromechanisms of fatigue crack growth in a bimetal of continuous caster rolls. Case Studies in Engineering Failure Analysis, 1(2), 165-170. DOI:10.1016/j.csefa.2013.05.00310.1016/j.csefa.2013.05.003Search in Google Scholar

10. Panin, V. E., Elsukova, T. F., Popkova, Yu. F. (2011) Stages of multiscale fatigue cracking as a nonlinear rotational autowave process. Physical Mesomechanics, 14(3-4), 112-123. DOI:10.1016/j.physme.2011.08.003Search in Google Scholar

11. Plekhov, O. A., Saintier, N., Palin-Luc, T., Uvarov, S. V., Naimark, O. B. (2007) Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading. Materials Science and Engineering: A, 462(1-2), 367-369. DOI:10.1016/j.msea.2006.02.46210.1016/j.msea.2006.02.462Search in Google Scholar

12. Shanyavskiy, A. A. (2013) Mechanisms and modeling of subsurface fatigue cracking in metals. Engineering Fracture Mechanics, 110, 350-363. DOI:10.1016/j.engfracmech.2013.05.01310.1016/j.engfracmech.2013.05.013Search in Google Scholar

13. Shaniavski, A. A., Artamonov, M. A. (2004) Fractal dimensions for fatigue fracture surfaces performed on micro- and meso-scale levels. International Journal of Fracture, 128(1-4), 309-314. DOI:10.1023/B:FRAC.0000040994.96074.bf10.1023/B:FRAC.0000040994.96074.bfSearch in Google Scholar

14. Shanyavskiy, A. A., Burchenkova, L. M. (2013) Mechanism for fatigue striations as formed under variable negative R-ratio in Al-based structural alloys. International Journal of Fatigue, 50, 47-56. DOI:10.1016/j.ijfatigue.2012.04.00610.1016/j.ijfatigue.2012.04.006Search in Google Scholar

15. Silva, F. S. (2005) The importance of compressive stresses on fatigue crack propagation rate. International Journal of Fatigue, 27(10-12), 1441-1452. DOI:10.1016/j.ijfatigue.2005.07.00310.1016/j.ijfatigue.2005.07.003Search in Google Scholar

16. Varfolomeev, I., Luke, M., Burdack, M. (2011) Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T. Engineering Fracture Mechanics, 78(5), 742-753. DOI:10.1016/j.engfracmech.2010.11.01110.1016/j.engfracmech.2010.11.011Search in Google Scholar

17. Wawszczak, J., Kurzydłowski, K. J. (2009) Grain size correlation with the geometry of fracture surface profiles in polycrystalline iron by a continuous wavelet transformation method. Materials Characterization, 60(10), 1180-1184. DOI:10.1016/j.matchar.2009.02.01410.1016/j.matchar.2009.02.014Search in Google Scholar

18. Xiong, Y., Katsuta, J., Kawano, K., Sakiyama, T. (2008) Examination of fatigue crack driving force parameter. Fatigue & Fracture of Engineering Materials & Structures, 31(9), 754-765. DOI:10.1111/j.1460-2695.2008.01261.x10.1111/j.1460-2695.2008.01261.xSearch in Google Scholar

19. Yasniy, O., Lapusta, Y., Pyndus, Y., Sorochak, A., Yasniy, V. (2013) Assessment of lifetime of railway axle. International Journal of Fatigue, 50, 40-46. DOI:10.1016/j.ijfatigue.2012.04.00810.1016/j.ijfatigue.2012.04.008Search in Google Scholar

20. Zhang, J., He, X. D., Sha, Y., Du, S. Y. (2010) The compressive stress effect on fatigue crack growth under tension-compression loading. International Journal of Fatigue, 32(2), 361-367. DOI:10.1016/j.ijfatigue.2009.07.00810.1016/j.ijfatigue.2009.07.008Search in Google Scholar

eISSN:
1407-6179
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other