Open Access

Effect of Fiber Distribution on the Mechanical Behavior in Bending of Self-Compacting Mortars


Cite

[1] Baqersad, M., Sayyafi, E. A., & Bak, H. M. (2017). State of the art: mechanical properties of ultra-high performance concrete. Civil Engineering Journal, Volume 3(3), 190-198. DOI: 10.28991/cej-2017-0000008510.28991/cej-2017-00000085Search in Google Scholar

[2] M. Zhou, Wei Lu, Jianwei Song &George C. Lee. (2018). Application of Ultra-High Performance Concrete in bridge engineering. Construction and Building Materials. Volume (186), pp.1256-1267. DOI.org/10.1016/j.conbuildmat.2018.08.03610.1016/j.conbuildmat.2018.08.036Search in Google Scholar

[3] N.M. Azmee & N. Shafiq. (2018). Ultra-High Performance Concrete: From Fundamental to Applications. Case Studies in Construction Materials., pp.1-21 doi.org/10.1016/j.cscm.2018.e00197Search in Google Scholar

[4] Dagenais, M. A., Massicotte, B., & Boucher-Proulx, G. (2018). Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. Journal of Bridge Engineering, 23(2), 04017129.10.1061/(ASCE)BE.1943-5592.0001173Search in Google Scholar

[5] Lachance, F., Charron, J. P., & Massicotte, B. (2016). Development of Precast Bridge Slabs in High-Performance Fiber-Reinforced Concrete and Ultra-High-Performance Fiber-Reinforced Concrete. ACI Structural Journal, 113(5).10.14359/51689020Search in Google Scholar

[6] Elsa Nguyen Phuong Amanjean.(2015). Développement de Bétons Fibrés Ultra Performants pour la réalisation d’éléments de structure préfabriqués. Phd Thesis University of Toulouse. FranceSearch in Google Scholar

[7] Verger-Leboeuf, S., Charron, J. P., & Massicotte, B. (2017). Design and behavior of UHPFRC field-cast transverse connections between precast bridge deck elements. Journal of Bridge Engineering, 22(7), 04017031.10.1061/(ASCE)BE.1943-5592.0001064Search in Google Scholar

[8] Benjamin A. Graybeal. (2007). Compressive Behavior of Ultra-High-Performance Fiber Reinforced Concrete. ACI Materials Journal. Volume (104-M17), pp. 146–152.Search in Google Scholar

[9] S. Abbas, M.L Nehdi & M.A. Saleem. (2016). Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges. Concrete Structures and Materials. Volume (10), pp. 271–295. DOI.10.1007/s40069-016-0157-410.1007/s40069-016-0157-4Search in Google Scholar

[10] H.R. Sobuz, P.Visintin, M.S. Mohamed Ali, M. Singh, M.C. Griffith & A.H. Sheikh.(2016). Manufacturing ultra-high performance concrete utilizing conventional materials and production methods. Construction and Building Materials. Volume (111).pp. 251-261 doi.org/10.1016/j.buildmat.2016.02.10210.1016/j.conbuildmat.2016.02.102Search in Google Scholar

[11] Doo-Yeol Yoo, Kyung-Hwan Min, Joo-Ha Lee & Young-Soo Yoon.(2014).Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age. Construction and Building Materials. Volume (73).pp. 357–365.doi.org/10.1016/j.buildmat.2014.09.097Search in Google Scholar

[12] Doo-Yeal Yoo, Soonho Kim & Min-Jae Min.(2018).Comparative shrinkage behavior of ultra-high-performance fiber reinforced concrete under ambient and heat curing conditions. Construction and Building Materials. Volume (162).pp. 406–419.doi.org/10.1016/j.buildmat.2017.12.029Search in Google Scholar

[13] Yi Xu, Jiaping Liu, Jianzhong Liu, Ping Zhang, Qianqian Zhang & Linhua Jiang.(2018).Experimental studies and modeling of creep of UHPC. Construction and Building Materials. Volume (175).pp. 643-652.doi.org/10.1016/j.buildmat.2018.04.15710.1016/j.conbuildmat.2018.04.157Search in Google Scholar

[14] V.Y. Garas, K.E Kurtis & L.F Kahn.(2012). Creep of UHPC in tension and compression: Effect of thermal treatment. Cement & Concrete Composites. Volume (34).pp. 493-502. Doi:10.1016/j.cemconcomp.2011.12.00210.1016/j.cemconcomp.2011.12.002Search in Google Scholar

[15] Jun Li, Chengqing Wu & Hong Hao.(2015).Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion. Engineering Structures. Volume (102).pp. 395-408.doi.org/10.1016/j.engstruct.2015.08.03210.1016/j.engstruct.2015.08.032Search in Google Scholar

[16] Ali Alsalman, Canh N.Dang, Gary S. Prinz & W. Micah Hale.(2017).Evaluation of modulus of elasticity of ultra-high performance concrete. Construction and Building Materials. Volume (153).pp. 918-928.doi.org/10.1016/j.conbuildmat.2017.07.15810.1016/j.conbuildmat.2017.07.158Search in Google Scholar

[17] Masoud Pourbaba, Elyar Asefi, Hamed Sadaghian & Amir Mirmiran.(2018).Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete. Construction and Building Materials. Volume (175).pp. 402-410.doi.org/10.1016/j.conbuildmat.2018.04.20310.1016/j.conbuildmat.2018.04.203Search in Google Scholar

[18] Kequan Yu, Jiangtao Yu & Zhoudao Lu. (2018). Mechanical Characteristics of Ultra High Performance. V. Mechtcherine et al. (Eds.), Strain Hardening Cementitious Composites.(RILEM Bookseries,15).10.1007/978-94-024-1194-2_27Search in Google Scholar

[19] Yuliarti Kusumawardaningsih, Ekkehard Fehling, Mohammed Ismail & Attitou Amen Mohamed Aboubkr.(2015).Tensile strength behavior of UHPC and UHPFRC. Procedia Engineering. Volume (125).pp. 1081-1086. Doi :10.1016/j.proeng.2015.11.16610.1016/j.proeng.2015.11.166Search in Google Scholar

[20] Kim Huy Hoang & Nguyen Viet Tue.(2018).Comparative Flexural and Tensile Behaviors of Ultra-High Performance Fiber Reinforced Concrete with Different Steel Fibers.V. Mechtcherine et al. (eds.). Strain Hardening Cementitious Composites.(RILEM Bookseries).Search in Google Scholar

[21] Haber, Z. B., De la Varga, I., Graybeal, B. A., Nakashoji, B., & El-Helou, R. (2018). Properties and behavior of UHPC-class materials (No. FHWA-HRT-18-036). United States. Federal Highway Administration. Office of Infrastructure Research and Development.Search in Google Scholar

[22] Shivam Gangwar, Suruchi Mishra & H.K.Sharma.(2019).An Experimental Study on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC). Sustainable Construction and Building Materials. pp. 873–886. doi.org :10.1007/978-981-13-3317-0_0810.1007/978-981-13-3317-0_78Search in Google Scholar

[23] Luis Felipe Maya Duque and Benjamin Graybeal. (2017).Fiber orientation distribution and tensile mechanical response in UHPFRC. Materials and Structures. pp 1-17. doi : 10.1617/s11527-016-0914-510.1617/s11527-016-0914-5Search in Google Scholar

[24] Huanghuang Huang, Xiaojian Gao, Linshan Li &Hui Wang. (2018).Improvement effect of steel fiber orientation control on mechanical performance of UHPC. Construction and Building Materials. Volume (188).pp. 709-721.doi.org/10.1016/j.conbuilmat.2018.08.14610.1016/j.conbuildmat.2018.08.146Search in Google Scholar

[25] Huanghuang Huang, Ansuhang Su,Xiaojian Gao & Yingzi Yang.(2019).Influence of formwork wall effect on fiber orientation of UHPC with two casting methods. Construction and Building Materials. Volume (215).pp. 310-320.doi.org/10.1016/j.conbuilmat.2019.04.20010.1016/j.conbuildmat.2019.04.200Search in Google Scholar

[26] Rui Wang, Xiaojian Gao, Huanghuang Huang & Guangshui Han. (2017).Influence of rheological properties of cement mortar on steel fiber distribution in UHPC. Construction and Building Materials. Volume (144).pp. 65-73.doi.org/10.1016/j.conbuilmat.2017.03.17310.1016/j.conbuildmat.2017.03.173Search in Google Scholar

[27] Cong Lu & Christopher K.Y Leung. (2017).Theoretical evaluation of fiber orientation and its effects on mechanical properties in Engineered Cementitious Composites (ECC) with various thicknesses. Cement and Concrete Research. Volume (95).pp. 240-246.doi.org/10.1016/j.cimconres.2017.02.024Search in Google Scholar

[28] Sue Tae Kang, Bang Yeon Lee, Jin-Keun Kim & Yun Yong Kim.(2011).The effect of fiber distribution characteristics on the flexural strength of steel fiber-reinforced ultra-high strength concrete. Construction and Building Materials. Volume (25).pp. 2450-2457. Doi:10.1016/j.conbuildmat.2010.11.05710.1016/j.conbuildmat.2010.11.057Search in Google Scholar

[29] Qiulei Song, Rui Yu,Zhonghe Shui, Xinpeng Wang, Suduan Rao & Zewen Lin.(2018).Optimization of fibre orientation and distribution for a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Experiments and mechanism analysis. Construction and Building Materials. Volume (169).pp. 8-19. doi.org/10.1016/j.conbuilmat.2018.02.13010.1016/j.conbuildmat.2018.02.130Search in Google Scholar

[30] Burak Felekoglu, Selçuk Turkel & Yigit Altuntas.(2007). Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars. Cement & Concrete Composites. Volume (29).pp. 391-396.doi.org/10.1016/j.cemconcomp.2006.12.01010.1016/j.cemconcomp.2006.12.010Search in Google Scholar

[31] Warun Wongprachum, Manote Sappakittipakorn, Piti Sukontasukkul, Prinya Chindapprasirt & Nemkumar Banthia.(2018). Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar. Construction and Building Materials. Volume (189).pp.686-694.doi.org/10.1016/j.conbuilmat.2018.09.04310.1016/j.conbuildmat.2018.09.043Search in Google Scholar

[32] Aamer Bhutta, Mohamed Farooq & Nemkumar Bathia.(2019).Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials. Volume (125).pp.605-612.doi.org/10.1016/j.conbuilmat.2019.04.21010.1016/j.conbuildmat.2019.04.210Search in Google Scholar

[33] T. Simões, H. Costa, D. Dias-da-Costa & E. Julio. (2018). Influence of type and dosage of micro-fibers on the physical properties of fiber reinforced mortar matrixes. Construction and Building Materials. Volume (187).pp.1277-1285.doi.org/10.1016/j.conbuilmat.2018.08.05810.1016/j.conbuildmat.2018.08.058Search in Google Scholar

[34] Mingli Cao, Ling Xu & Cong Zhang.(2018).Rheological and mechanical properties of hybrid fiber reinforced cement mortar. Construction and Building Materials. Volume (171).pp.736-742.doi.org/10.1016/j.conbuilmat.2017.09.05410.1016/j.conbuildmat.2017.09.054Search in Google Scholar

[35] A. Schwartzentruber & C. Catherine. (2000).Method of the concrete equivalent mortar (CEM)-A new tool to design concrete containing admixture. Materials and Structures/Matériaux et Structures. Volume (33). pp. 475-482.Search in Google Scholar

[36] EFNARC (2002).Specification and guidelines for self-compacting concrete. pp 25-35.Free pdf copy downloadable from. Http: //www.efnarc.org.Search in Google Scholar

[37] European Standard (1999-b) “Methods of test for mortar for masonry, Part 10: Determination of dry bulk density of hardened mortar.” EN 1015-10, European Committee for Standardization CEN, Brussels, AugustSearch in Google Scholar

[38] European Standard (1999-c) “Methods of test for mortar for masonry Part 11: Determination of flexural and compressive strength of hardened mortar.” EN 1015-11, English European Committee for Standardization CEN, Brussels, August.Search in Google Scholar

[39] Yoo, D.Y., Kim, S., Park, G.J., Park, J.J. &Kim, S.W.(2017).Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. Volume (174).pp.375-388.10.1016/j.compstruct.2017.04.069Search in Google Scholar

[40] Lee, S. J., Yoo, D. Y., & Moon, D. Y. (2019). Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. Applied Sciences, Volume 9(6), 1241.10.3390/app9061241Search in Google Scholar

[41] Yazici, S., Inan, G. & Tabak, V. (2007).Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, Volume (21).pp.1250-1253.10.1016/j.conbuildmat.2006.05.025Search in Google Scholar

[42] Danying Gao, Lijuan Zhang, Michelle Nokken & Jun Zhao.(2019). Mixture Proportion Design Method of Steel Fiber Reinforced Recycled Coarse Aggregate Concrete. Materials. Volume(12).p 37510.3390/ma12030375638497130691043Search in Google Scholar

[43] Gao, D., Zhang, L. &Nokken, M.(2017).Mechanical behavior of recycled coarse aggregate concrete reinforced with steel fibers under direct shear. Cement and Concrete Composites. Volume (79). pp1-810.1016/j.cemconcomp.2017.01.006Search in Google Scholar

[44] Carneiro, J.A., Lima, P.R.L., Leite, M.B. & Toledo Filho, R.D.(2014).Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete. Cement and Concrete Composites. Volume (46).pp 65-72.10.1016/j.cemconcomp.2013.11.006Search in Google Scholar

[45] Biao Li, Lihua Xu, Yuchuan Shi, Yin Chi, Qi Liu & Changning Li.(2018).Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Construction and Building Materials. Volume (181).pp 474-48610.1016/j.conbuildmat.2018.06.065Search in Google Scholar

[46] P. Mahakavi & R. Chithra. (2019). Impact resistance, microstructures and digital image processing on self-compacting concrete with hooked end and crimped steel fiber. Construction and Building Materials. Volume (220).pp 651-666.Search in Google Scholar

[47] Pająk, M., & Ponikiewski, T. (2017). Investigation on concrete reinforced with two types of hooked fibers under flexure. Procedia engineering, 193, 128-135.10.1016/j.proeng.2017.06.195Search in Google Scholar

eISSN:
1338-7278
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other