Cite

[1] Xie, X., Gou, G., Wei, X., Zhou, Z., Jiang, M., Xu, X., Wang, Z. & Hui, D. (2016). Influence of pretreatment of rice straw on hydration of straw fiber filled cement based composites. Construction and Building Materials, 113, 449-45510.1016/j.conbuildmat.2016.03.088Search in Google Scholar

[2] Chakraborty, S., Kundu, S. P., Roy, A., Basak, R. K., Adhikari, B., & Majumder, S. B. (2013). Improvement of the mechanical properties of jute fibre reinforced cement mortar: a statistical approach. Construction and Building Materials, 38, 776-784.10.1016/j.conbuildmat.2012.09.067Search in Google Scholar

[3] Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1-16.10.1016/j.cemconres.2015.02.019Search in Google Scholar

[4] JA, M. H., Majid, M. A., Afendi, M., Marzuki, H. F. A., Hilmi, E. A., Fahmi, I., & Gibson, A.G. (2016). Effects of water absorption on Napier grass fibre/polyester composites. Composite Structures, 144, 138-146.10.1016/j.compstruct.2016.02.067Search in Google Scholar

[5] Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108.10.1016/j.cemconcomp.2016.02.014Search in Google Scholar

[6] Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Construction and Building Materials, 25(9), 3661-3667.10.1016/j.conbuildmat.2011.03.052Search in Google Scholar

[7] Tonoli, G. H. D., Belgacem, M. N., Siqueira, G., Bras, J., Savastano, H., & Lahr, F. R. (2013). Processing and dimensional changes of cement based composites reinforced with surfacetreated cellulose fibres. Cement and Concrete Composites, 37, 68-75.10.1016/j.cemconcomp.2012.12.004Search in Google Scholar

[8] Ramakrishna, G., & Sundararajan, T. (2005). Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cement and concrete composites, 27(5), 547-553.10.1016/j.cemconcomp.2004.09.006Search in Google Scholar

[9] Chakraborty, S., Kundu, S. P., Roy, A., Basak, R. K., Adhikari, B., & Majumder, S. B. (2013). Improvement of the mechanical properties of jute fibre reinforced cement mortar: a statistical approach. Construction and Building Materials, 38, 776-784.10.1016/j.conbuildmat.2012.09.067Search in Google Scholar

[10] Jarabo, R., Fuente, E., Monte, M. C., Savastano, H., Mutjé, P., & Negro, C. (2012). Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Industrial Crops and Products, 39, 89-96.10.1016/j.indcrop.2012.02.017Search in Google Scholar

[11] Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Construction and Building Materials, 25(9), 3661-3667.10.1016/j.conbuildmat.2011.03.052Search in Google Scholar

[12] Khorami, M., & Ganjian, E. (2013). The effect of limestone powder, silica fume and fibre content on flexural behaviour of cement composite reinforced by waste Kraft pulp. Construction and Building Materials, 46, 142-149.10.1016/j.conbuildmat.2013.03.099Search in Google Scholar

[13] Václavík, V., Daxner, J., Valíček, J., Dvorský, T., Kušnerová, M., Harničárová, M., Bendová, M. & Břenek, A. (2014). The use of industrial waste as a secondary raw material in restoration plaster with thermal insulating effect. In Advanced Materials Research (Vol. 897, pp. 204-214). Trans Tech Publications.10.4028/www.scientific.net/AMR.897.204Search in Google Scholar

[14] Savastano, H., Warden, P. G., & Coutts, R. S. (2003). Potential of alternative fibre cements as building materials for developing areas. Cement and Concrete composites, 25(6), 585-592.10.1016/S0958-9465(02)00071-9Search in Google Scholar

[15] Slovak Office of Standards, Metrology and Testing. (2016). Methods of testing cement - Part 1: Determination of strength. STN EN 196-1. Slovakia.Search in Google Scholar

[16] Slovak Office of Standards, Metrology and Testing. (2001). Methods of test for mortar for masonry. Part 10: Determination of dry bulk density of hardened mortar. STN EN 1015-10. Slovakia.Search in Google Scholar

[17] Slovak Office of Standards, Metrology and Testing. (1989). Determination of moisture content, absorptivity and capillarity of concrete. STN 73 1316. Slovakia.Search in Google Scholar

[18] Slovak Office of Standards, Metrology and Testing. (2001). Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar. STN EN 1015-11. Slovakia.Search in Google Scholar

[19] Savastano, H., Warden, P. G., & Coutts, R. S. P. (2000). Brazilian waste fibres as reinforcement for cement-based composites. Cement and Concrete Composites, 22(5), 379-384.10.1016/S0958-9465(00)00034-2Search in Google Scholar

[20] Slovak Office of Standards, Metrology and Testing. (2011).Specification for mortar for masonry. Part 1: Rendering and plastering mortar. STN EN 998-1. Slovakia.Search in Google Scholar

[21] Pehanich, J. L., Blankenhorn, P. R., & Silsbee, M. R. (2004). Wood fiber surface treatment level effects on selected mechanical properties of wood fiber-cement composites. Cement and Concrete Research, 34(1), 59-65.10.1016/S0008-8846(03)00193-5Search in Google Scholar

[22] Shezad, O., Khan, S., Khan, T., & Park, J. K. (2010). Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82(1), 173-180.10.1016/j.carbpol.2010.04.052Search in Google Scholar

[23] Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086-1093.10.1016/j.carbpol.2009.10.045Search in Google Scholar

eISSN:
1338-7278
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other