Open Access

Flexural Fatigue performance of Alkali Activated Slag Concrete mixes incorporating Copper Slag as Fine Aggregate


Cite

[1] Roy D. (1999). Alkali-activated cements - opportunities and challenges. Cement and Concrete Research. Vol.29, no.2, pp.249-254.10.1016/S0008-8846(98)00093-3Search in Google Scholar

[2] Shi, C., Krivenko, P.V. and Roy, D. (2006). Alkali-activated cements and concretes. United Kingdom: Taylor Francis, Abingdon.10.4324/9780203390672Search in Google Scholar

[3] Talling, B. and Krivenko, P.V.(1997). Blast furnace slag - the ultimate binder. In: S. Chandra Editor. Waste materials used in concrete manufacturing. pp.235-289, Noyes Publications.10.1016/B978-081551393-3.50008-9Search in Google Scholar

[4] Van Deventer, J.S.J., Provis, J.L., Duxson, P. and Brice, D.G. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valorization. Vol. 1, no.1, pp.145-155.10.1007/s12649-010-9015-9Search in Google Scholar

[5] Al-Jabri, S.K., Makoto, H., Al-Oraimi, K.S. and Al-Saidy, H.S. (2009). Copper slag as sand replacement for high performance concrete. Cement and Concrete Research. Vol.31, no.7, pp.483-488.10.1016/j.cemconcomp.2009.04.007Search in Google Scholar

[6] Al-Jabri, S.K., Hisada, M., Al-Saidy, H.S., Al-Oraimi, K.S. (2009). Performance of high strength concrete made with copper slag as a fine aggregate. Construction and Building Materials. Vol. 23, pp.2132-2140.10.1016/j.conbuildmat.2008.12.013Search in Google Scholar

[7] Shi, C.J., Meyer, C. and Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resource Conservation and Recycling. Vol. 52, pp.1115-1120.10.1016/j.resconrec.2008.06.008Search in Google Scholar

[8] Shoya, M., Nagataki, S., Tomosawa, F., Sugita, S. and Sukinaga, Y.T. (1997). Freezing and thawing resistance of concrete with excessive bleeding and its improvement. In: Proceedings of the fourth CANMET/ACI International conference on durability of concrete. Vol.170, no. 45, pp.879-898, special publication.Search in Google Scholar

[9] Kumar, B. (2012). Properties of pavement quality concrete and dry lean concrete with copper slag as fine aggregate. International Journal of Pavement Engineering. first article, pp.1-6.Search in Google Scholar

[10] Hui, Mao-hua, Z. and Jin-ping, O. (2007). Flexural fatigue performance of concrete containing nano particles for pavements. International Journal of fatigue. Vol. 29. no 7, pp.1292-1301.10.1016/j.ijfatigue.2006.10.004Search in Google Scholar

[11] Lee, M.K. and Barr, B.I.G. (2004). An overview of the fatigue behavior of plain and fibre reinforced concrete. Cement Concrete Composites. Vol.26, pp. 299-305.10.1016/S0958-9465(02)00139-7Search in Google Scholar

[12] Jin-Keun, K and Yun-Yong, K. (1996). Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research. Vol. 26, no.10, pp. 1513-1523.10.1016/0008-8846(96)00151-2Search in Google Scholar

[13] Hsu, T.C.C. (1984). Fatigue and micro cracking of concrete. Materials and Structures.Vol.17, no.97, pp.51-54.10.1007/BF02474056Search in Google Scholar

[14] Wua, W., Weide, Z. and Guowei, M. (2010). Optimum content of copper slag as a fine aggregate in high strength concrete. Materials and Design. Vol. 31, no.6, pp.2878-2883.10.1016/j.matdes.2009.12.037Search in Google Scholar

[15] Wang, S.D. and Scrivener, K.L. (2003). 29Si and 27Al NMR study of alkali-activated slag. Cement and Concrete Research. Vol.33, no.5, pp.769-774.10.1016/S0008-8846(02)01044-XSearch in Google Scholar

[16] Bernal, S.A., Provis, J.L., Mejía de Gutierrez, R. and Rose, V. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concrete Composites. Vol.33. no.1, 46-54.10.1016/j.cemconcomp.2010.09.004Search in Google Scholar

[17] Ramakrishnan, V., Meyer, C., Naaman, A.E., Zhao, G. and Fang,.L. (1996). Cyclic behaviour, fatigue strength, endurance limit and models for fatigue behaviour of FRC. In: Spon E, Spon FN, editors. High performance fibers reinforced cement composites, Vol.2, pp. 101-48.Search in Google Scholar

[18] Erdem, S. and Blankson, M. A. (2014). Chloride-Ion penetrability and mechanical analysis of high strength concrete with copper slag. International Journal of Engineering Research and Applications. Vol.4, no.5, pp.101-113.Search in Google Scholar

[19] Oh, B.H. (1991). Fatigue life distributions of concrete for various stress levels. ACI material Journal. Vol. 88, no. 2, pp.122-128.10.14359/1870Search in Google Scholar

[20] Mohammadi, Y. and Kaushik, S.K. (2005). Flexural fatigue life distributions of plain and fibrous concrete at various stress levels. Journal of Materials in Civil Engineering. Vol.17, no.6, pp.650-658. 10.1061/(ASCE)0899-1561(2005)17:6(650)Search in Google Scholar

eISSN:
1338-7278
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other