Cite

1. Finkelstein, JD. (1998). The metabolism of homocysteine: Pathways and regulation. Eur J. Pediatr. 157, 40-44.10.1007/PL00014300Search in Google Scholar

2. Jordao, AA., Domenici, FA., Lataro, RC., Portari, GV., Vannucchi., H. (2009). Effect of methionine load on homocysteine levels, lipid peroxidation and DNA damage in rats receiving ethanol. Braz. Jourl. of Pharm. Sci. 45(4), 709-714.10.1590/S1984-82502009000400014Search in Google Scholar

3. Mendes, RH., Mostarda, C., Candido, GO., Moraes-Silva, IC., D’Almeida, V., Belló-Klein, A. et al. (2014). Moderate hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats. Auton. Neurosci. 180, 43-47.10.1016/j.autneu.2013.10.006Search in Google Scholar

4. Woo, CW., Prathapasinghe, GA., Siow, YL. (2006). Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim. Biophys. Acta 1762(7), 656-665.10.1016/j.bbadis.2006.05.012Search in Google Scholar

5. Song, YS., Rosenfeld, ME. (2004). Methionine-induced hyperhomocysteinemia promotes superoxide anion generation and NFkappaB activation in peritoneal macrophages of C57BL/6 mice. J. Med. Food. 7(2), 229-234.10.1089/1096620041224021Search in Google Scholar

6. Costa, MZ., da Silva, TM., Flores, NP., Schmitz, F., da Silva Scherer, EB., Viau, CM., Saffi, J. et al. (2013). Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol. Cell. Biochem. 384(1-2), 21-28.10.1007/s11010-013-1777-5Search in Google Scholar

7. Chin, K., Toue, S., Kawamata, Y., Watanabe, A., Miwa, T., Smriga, M. (2015). A 4-week toxicity study of methionine in male rats. Int. J. Toxicol. 34(3), 233-241.10.1177/1091581815583678Search in Google Scholar

8. Zepeda-Gómez, S., Montano-Loza, A., Zapata-Colindres, JC. Vargas-Vorackova, F. Majluf-Cruz, A. Uscanga, L. (2008). Oral challenge with a methionine load in patients with inflammatory bowel disease: a better test to identify hyperhomocysteinemia. Inflamm. Bowel. Dis. 14(3), 383-388.10.1002/ibd.20307Search in Google Scholar

9. Kang, SS., Wong, PWK., Malinow, MR. (1992). Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann. Rev. Nutr. 12, 279-298.10.1146/annurev.nu.12.070192.001431Search in Google Scholar

10. Lentz, SR. (1997). Homocysteine and vascular disfunction. Life Sci. 61, 1205-1215.10.1016/S0024-3205(97)00392-5Search in Google Scholar

11. Drzewoski, J., Gasiorowska, A., Malecka-Panas, E., Bald, E., Czupryniak, L. (2006). Plasma total homocysteine in the active stage of ulcerative colitis. J. Gastroenterol. Hepatol. 21, 739–743.10.1111/j.1440-1746.2006.04255.x16677162Search in Google Scholar

12. Morgenstern, I., Raijmakers, MT., Peters, WH., Hoensch, H., Kirch, W. (2003). Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Dig. Dis. Sci. 48(10), 2083-2090.10.1023/A:1026338812708Search in Google Scholar

13. Danese, S., Semeraro, S., Papa, A., Roberto, I., Scaldaferri, F., Fedeli, G. et al. (2005). Extraintestinal manifestations in inflammatory bowel disease. World J. Gastroenterol. 11(46), 7227-7236.10.3748/wjg.v11.i46.7227472514216437620Search in Google Scholar

14. Cosnes, J., Gower-Rousseau, C., Seksik, P., Cortot, A. (2011). Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140, 1785-1794.10.1053/j.gastro.2011.01.05521530745Search in Google Scholar

15. Kallel, L., Feki, M., Sekri, W., Segheir, L., Fekih, M., Boubaker, J. (2011). Prevalence and risk factors of hyperhomocysteinemia in Tunisian patients with Crohn’s disease. J. Crohns Colitis 5(2), 110-114.10.1016/j.crohns.2010.10.01021453879Search in Google Scholar

16. Zezos, P., Kouklakis, G., Saibil, F. (2014). Inflammatory bowel disease and thromboembolism. World J. Gastroenterol. 20(38), 13863-13878.10.3748/wjg.v20.i38.13863419456825320522Search in Google Scholar

17. Jiang, Y., Zhao, J., Xu, CL., Cao, SG., Lin, LM., Lei, Y et al. (2010). The relationship of methylenetetrahydrofolate reductase G1793A gene polymorphism, hyperhomocysteinaemia and ulcerative colitis. Zhonghua Nei. Ke. Za. Zhi. 49(8), 675-679.Search in Google Scholar

18. Casella, G., Bassotti, G., Villanacci, V., Di Bella, C., Pagni, F., Corti, GL. (2011). Is hyperhomocysteinemia relevant in patients with celiac disease? World J. Gastroenterol. 17(24), 2941-2944.Search in Google Scholar

19. Miller, JW., Beresford, SA., Neuhouser, ML., Cheng, TY., Song, X., Brown, EC. et al. (2013). Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am. J. Clin. Nutr. 97(4), 827-834.10.3945/ajcn.112.049932360765623426034Search in Google Scholar

20. Peyrin-Biroulet, L., Guéant, JL. (2007). Does hyperhomocysteinemia contribute to gastric carcinogenesis in Helicobacter pylori infected patients? Gut. 56(10), 1480.Search in Google Scholar

21. Phelip, JM., Ducros, V., Faucheron, JL., Flourie, B., Roblin, X. (2008). Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease. Inflamm. Bowel. Dis. 14(2), 242-248.10.1002/ibd.2030917941074Search in Google Scholar

22. Bhattacharyya, A., Chattopadhyay, R., Mitra, S., Crowe, SE. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94(2), 329-354.10.1152/physrev.00040.2012404430024692350Search in Google Scholar

23. Fonseca, VA., Stone, A., Munshi, M., Baliga, BS., Aljada, A., Thusu, K. et al. (1997). Oxidative stress in diabetic macrovascular disease: does homocysteine play a role? South Med. J. 90, 903–906.10.1097/00007611-199709000-000089305300Search in Google Scholar

24. Matté, C., Scherer, EBS., Stefanello, FM., Barschak, AG., Vargas, CR., Netto, CA. et al. (2007). Concurrent folate treatment prevents Na+,K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int. J. Dev. Neurosci. 25, 545–552.10.1016/j.ijdevneu.2007.10.003Search in Google Scholar

25. Ribeiro, G., Roehrs, M., Bairros, A., Moro, A., Charao, M., Araujo, F., Valentini, J., Arbo, M., Brucker, N., Moresco, R. et al. (2011). N-acetyl-cysteine on oxidative damage in diabetic rats. Drug Chem. Toxicol. 34, 467–474.10.3109/01480545.2011.564179Search in Google Scholar

26. Kerksick, C., Willoughby, D. (2005). The Antioxidant Role of Glutathione and N-acetyl-cysteine Supplements and Exercise-Induced Oxidative Stress. J. Int. Soc. Sports Nutr. 9, 38–44.10.1186/1550-2783-2-2-38Search in Google Scholar

27. McCully, KS. (2015). Homocysteine and the pathogenesis of atherosclerosis. Expert. Rev. Clin. Pharmacol. 8(2), 211-219.10.1586/17512433.2015.1010516Search in Google Scholar

28. Sanchez-Roman, I., Gomez, A., Naudí, A., Jove, M., Gómez, J., Lopez-Torres, M, Pamplona, R., Barja, G. (2014). Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J. Bioenerg. Biomembr. 46(3), 159-172.10.1007/s10863-013-9535-7Search in Google Scholar

29. Tappia, PS., Xu, YJ., Rodriguez-Leyva, D., Aroutiounova, N., Dhalla, NS. (2013). Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol. Res. 62(2), 171-178.10.33549/physiolres.932388Search in Google Scholar

30. Nosál’ová, V., Cerná, S., Bauer, V. (2000). Effect of N-acetylcysteine on colitis induced by acetic acid in rats. Gen. Pharmacol. 35(2), 77-81.10.1016/S0306-3623(01)00094-5Search in Google Scholar

31. Uraz, S., Tahan, G., Aytekin, H., Tahan, V. (2013). N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand. J. Clin. Lab. Invest. 73(1), 61-66.10.3109/00365513.2012.73485923110331Search in Google Scholar

32. Demiroren, K., Dogan, Y., Kocamaz, H., Ozercan, IH., Ilhan, S., Ustundag, B. et al. (2014). Protective effects of L-carnitine, N-acetylcysteine and genistein in an experimental model of liver fibrosis. Clin. Res. Hepatol. Gastroenterol. 38(1), 63-72.10.1016/j.clinre.2013.08.01424239319Search in Google Scholar

33. Kuyumcu, A., Akyol, A., Buyuktuncer, Z., Ozmen, MM., Besler, HT. (2015). Improved oxidative status in major abdominal surgery patients after N-acetyl cystein supplementation. Nutr. J. 14, 4-15.10.1186/1475-2891-14-4432055125559659Search in Google Scholar

34. Salim, AS. (1992). Role of sulfhydryl-containing agents in the healing of erosive gastritis and chronic gastric ulceration in the rat. J. Pharm. Sci. 81(1), 70-73.10.1002/jps.26008101141619573Search in Google Scholar

35. Cao, YG., Chai, JG., Chen, YC., Zhao, J., Zhou, J., Shao, JP. et al. (2009). Beneficial effects of danshensu, an active component of Salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats. Br. J. Pharmacol. 157(3), 482–490.10.1111/j.1476-5381.2009.00179.x270799419422396Search in Google Scholar

36. Liapi, C., Zarros, A., Theocharis, S., Al-Humadi, H., Anifantaki, F., Gkrouzman, E. et al. (2009). The neuroprotective role of L-cysteine towards the effects of short-term exposure to lanthanum on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase. Biometals. 22(2), 329-335.10.1007/s10534-008-9169-018937033Search in Google Scholar

37. Akbulut, S., Elbe, H., Eris, C., Dogan, Z., Toprak, G., Otan, E. et al. (2014). Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World. J. Gastroenterol. 20(29), 10158-10165.10.3748/wjg.v20.i29.10158412334625110444Search in Google Scholar

38. Drazic, A., Winter, J. (2014). The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta. 1844(8), 1367-1382.10.1016/j.bbapap.2014.01.00124418392Search in Google Scholar

39. Kim, G., Weiss, SJ., Levine, RL. (2014). Methionine oxidation and reduction in proteins. Biochim. Biophys. Actan. 1840(2), 901-905.10.1016/j.bbagen.2013.04.038376649123648414Search in Google Scholar

40. Kluge H, Gessner DK, Herzog E, Eder K (2015) Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks. Poult Sci pii: pev355 (Epub ahead of print) PMID:26706358Search in Google Scholar

41. Elshorbagy, AK., Valdivia-Garcia, M., Mattocks, DA., Plummer, JD., Orentreich, DS., Orentreich, N., Refsum, H., Perrone, CE. (2013). Effect of taurine and N-acetyl-cysteine on methionine restriction-mediated adiposity resistance. Metabolism. 62(4), 509-517.10.1016/j.metabol.2012.10.00523154184Search in Google Scholar

42. Rushworth, GF., Megson, IL. (2014). Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 141, 150–159.10.1016/j.pharmthera.2013.09.00624080471Search in Google Scholar

43. Särnstrand, B., Jansson, AH., Matuseviciene, G., Scheynius, A., Pierrou, S., Bergstrand, H. (1999). N,N’-Diacetyl-L-cystine-the disulfide dimer of N-acetyl-cysteine-is a potent modulator of contact sensitivity/delayed type hypersensitivity reactions in rodents. J. Pharmacol. Exp. Ther. 288(3), 1174-1184.Search in Google Scholar

44. Swennen, Q., Geraert, PA., Mercier, Y., Everaert, N., Stinckens, A., Willemsen, H., Li, Y., Decuypere, E., Buyse, J. (2011). Effects of dietary protein content and 2-hydroxy-4-methylthiobutanoic acid or DL-methionine supplementation on performance and oxidative status of broiler chickens. Br. J. Nutr. 106(12), 1845-1854.10.1017/S000711451100255821736775Search in Google Scholar

45. Meng, B., Gao, W., Wei, J., Pu, L., Tang, Z., Guo, C. (2015). Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet. Biomed. Res. Int. 24, 35-41.10.1155/2015/815210462900126558284Search in Google Scholar

46. Harper, AE., Beneveng, NJ., Wohlhuet, RM. (1970). Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 50, 428.10.1152/physrev.1970.50.3.4284912906Search in Google Scholar

47. Cole, NW., Weaver, KR., Walcher, BN., Adams, ZF., Miller, RR. (2008). Hyperglycemia-induced membrane lipid peroxidation and elevated homocysteine levels are poorly attenuated by exogenous folate in embryonic chick brains. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 150(3), 338-343.10.1016/j.cbpb.2008.04.00218486511Search in Google Scholar

48. Manna, P., Das, J., Sil, PC. (2013). Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr. Diabetes. 9(3), 237-248.10.2174/157339981130903000523547683Search in Google Scholar

49. De Andrade, KQ., Moura, FA., Dos Santos, JM., de Araújo, OR., de Farias Santos, JC., Goulart, MO. (2015). Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int. J. Mol. Sci. 16(12), 30269-30308.10.3390/ijms161226225469116726694382Search in Google Scholar

50. Channon, HJ., Manifold, MC., Platt, AP. (1938). The action of cystine and methionine on liver fat deposition. Biochem. J. 32(6), 969-975.10.1042/bj0320969126413716746722Search in Google Scholar

51. Earle, DP., Smull, K., Victor, J. (1942). Effects of excess dietary cysteic acid, dl-methionine, and taurine on the rat liver. J. Exp. Med. 76(4), 317-324.10.1084/jem.76.4.317213531619871239Search in Google Scholar

52. Roediger, WE., Duncan, A., Kapaniris, O., Millard, S. (1993). Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin. Sci. 85(5), 623-627.Search in Google Scholar

53. Halliwell, B. (2015). Free Radicals and Other Reactive Species in Disease. eLS. 1–9.10.1002/9780470015902.a0002269.pub3Search in Google Scholar

54. Pang, X., Liu, J., Zhao, J., Mao, J., Zhang, X., Feng, L., Han, C., Li, M., Wang, S., Wu, D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 236(1), 73-81.10.1016/j.atherosclerosis.2014.06.02125016361Search in Google Scholar

55. Baggott, JE., Tamura, T. (2015). Homocysteine, iron and cardiovascular disease: a hypothesis. Nutrients 7(2), 1108-1118.10.3390/nu7021108434457825668155Search in Google Scholar

56. Lee, HJ., Choi, JS., Lee, HJ., Kim, WH., Park, SI., Song, J. (2015). Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction. J. Nutr. Biochem. 26(12), 1414-1423.10.1016/j.jnutbio.2015.07.00826383538Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other