Cite

1. Liu FT, Rabinovich GA. (2005). Galectins as modulators of tumour progression. Nat Rev Cancer, 5(1), 29-41.10.1038/nrc1527Search in Google Scholar

2. Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N, et al. (2012). The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res, 52,100–110.10.1007/s12026-012-8286-6Search in Google Scholar

3. Moutsatsos IK, Wade M, Schindler M, Wang JL. (1987). Endogenous lectins from cultured cells: nuclear localization of carbohydrate binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci USA, 84, 6452–6456.10.1073/pnas.84.18.6452Search in Google Scholar

4. Yu F, Finley R, Raz A, Kim H-RC. (2002). Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem, 277(18), 15819–15827.10.1074/jbc.M200154200Search in Google Scholar

5. Paron I, Scaloni A, Pines A, Bachi A, Liu F-T, Puppin C, et al. (2003). Nuclear localization of Galectin-3 in transformed thyroid cells:a role in transcriptional regulation. Biochem Biophys Res Commun, 302(3), 545–553.10.1016/S0006-291X(03)00151-7Search in Google Scholar

6. Dagher SF, Wang JL, Patterson RJ. (1995). Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci USA, 92(4), 1213–1217.10.1073/pnas.92.4.1213426697862663Search in Google Scholar

7. Wang JL, Gray RM, Haudek KC, Patterson RJ. (2004). Nucleocytoplasmic lectins. Biochim Biophys Acta, 1673(1–2), 75–93.10.1016/j.bbagen.2004.03.01315238251Search in Google Scholar

8. Yang RY, Hsu DK, Liu FT. (1996). Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA, 93, 6737–6742.10.1073/pnas.93.13.6737390968692888Search in Google Scholar

9. Califice S, Castronovo V, Bracke M, van den Brûle F. (2004). Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene, 23(45), 7527–7536.10.1038/sj.onc.120799715326483Search in Google Scholar

10. Nakahara S, Oka N, Raz A. (2005). On the role of galectin-3 in cancer apoptosis. Apoptosis, 10(2), 267–275.10.1007/s10495-005-0801-y15843888Search in Google Scholar

11. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J, 17(6), 1675-1687.10.1093/emboj/17.6.167511705159501089Search in Google Scholar

12. Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, et al. (2004). Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res, 64(10), 3376-3379.10.1158/0008-5472.CAN-04-033615150087Search in Google Scholar

13. Hsu DK, Chen HY, Liu FT. (2009). Galectin-3 regulates T-cell functions. Immunol Rev, 230(1), 114-127.10.1111/j.1600-065X.2009.00798.x19594632Search in Google Scholar

14. Dumic J, Dabelic S, Flögel M. (2006). Galectin-3: an open-ended story. Biochim Biophys Acta, 1760, 616–635.10.1016/j.bbagen.2005.12.02016478649Search in Google Scholar

15. Funasaka T, Raz A, Nangia-Makker P. (2014). Galectin-3 in angiogenesis and metastasis. Glycobiology, 24(10), 886–891.10.1093/glycob/cwu086415376025138305Search in Google Scholar

16. Yu L-G. (2010). Circulating galectin-3 in the blood-stream: An emerging promoter of cancer metastasis. World J Gastrointest Oncol, 2(4), 177-180.10.4251/wjgo.v2.i4.177299918221160594Search in Google Scholar

17. Braeuer RR, Shoshan E, Kamiya T, Bar-Eli M. (2012). The sweet and bitter sides of galectins in melanoma progression. Pigment Cell Melanoma Res, 25(5), 592-601.10.1111/j.1755-148X.2012.01026.x22672152Search in Google Scholar

18. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, et al. (2000). Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol, 165, 2156–2164.10.4049/jimmunol.165.4.215610925302Search in Google Scholar

19. Ochieng J, Leite-Browning ML, Warfield P. (1998). Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun, 246, 788–791.10.1006/bbrc.1998.87089618290Search in Google Scholar

20. Demetriou M, Granovsky M, Quaggin S, Dennis JW. (2001). Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 409, 733–739.10.1038/3505558211217864Search in Google Scholar

21. Breuilh L, Vanhoutte F, Fontaine J, van Stijn CM, Tillie-Leblond I, Capron M, et al. (2007). Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect Immun, 75, 5148–5157.10.1128/IAI.02006-06216830417785480Search in Google Scholar

22. Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol, 190, 3427–3437.10.4049/jimmunol.120212223455499Search in Google Scholar

23. Cortegano I, del Pozo V, Cárdaba B, de Andrés B, Gallardo S, del Amo A et al. (1998). Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol, 161, 385–389.10.4049/jimmunol.161.1.385Search in Google Scholar

24. Ruas LP, Bernardes ES, Fermino ML, de Oliveira LL, Hsu DK, Liu FT. et al. (2009). Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS One, 4, e4519.10.1371/journal.pone.0004519264100319229338Search in Google Scholar

25. Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, et al. (2006). Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am J Pathol, 168, 1910–1920.10.2353/ajpath.2006.050636160662816723706Search in Google Scholar

26. Ochieng J, Furtak V, Lukyanov P. (2004). Extracellular functions of galectin-3. Glycoconj J, 19, 527–535.10.1023/B:GLYC.0000014082.99675.2fSearch in Google Scholar

27. Mishra BB, Li Q, Steichen AL, Binstock BJ, Metzger DW, Teale JM, et al. (2013). Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PLoS One, 8(3), e59616.10.1371/journal.pone.0059616360390823527230Search in Google Scholar

28. Iacobini C, Menini S, Oddi G, Ricci C, Amadio L, Pricci F, et al. (2004). Galectin-3/AGE-receptor 3 knockout mice show accelerated AGE-induced glomerular injury: evidence for a protective role of galectin-3 as an AGE receptor. FASEB Journal, 18, 1773–1775.10.1096/fj.04-2031fje15361471Search in Google Scholar

29. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Djukic ALj, Arsenijevic NN, et al. (2013). Galectin-3 is a regulator of metaflammation in adipose tissue and pancreatic islets. Adipocyte, 2(4), 266-271.10.4161/adip.24881377470424052904Search in Google Scholar

30. Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT et al. (1995). Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med, 1, 634–646.10.1007/BF03401604Search in Google Scholar

31. Karlsen AE, Størling ZM, Sparre T, Larsen MR, Mahmood A, Størling J, et al. (2006). Immune-mediated beta-cell destruction in vitro and in vivo-A pivotal role for galectin-3. Biochem Biophys Res Commun, 344, 406-415.10.1016/j.bbrc.2006.03.10516600178Search in Google Scholar

32. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, et al. (2013). Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes, 62(6), 1932-1944.10.2337/db12-0222366161123349493Search in Google Scholar

33. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al. (2008). Regulation of alternative macrophage activation by galectin-3. J Immunol, 180, 2650–2658.10.4049/jimmunol.180.4.265018250477Search in Google Scholar

34. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 11, 136–140.10.1038/ni.183120023662Search in Google Scholar

35. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17,179-188.10.1038/nm.2279307602521217695Search in Google Scholar

36. Angulo P. (2007). Obesity and nonalcoholic fatty liver disease. Nutr Rev, 65, S57–S63.10.1301/nr.2007.jun.S57-S63Search in Google Scholar

37. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. (2012). The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the american associations for the study of liver diseases, American college of gastroenterology, and the American gastroenterologycal association. Hepatology, 55(6), 2005-2023.10.1002/hep.2576222488764Search in Google Scholar

38. Pugliese G, Iacobini C, Pesce CM, Menini S. (2015). Galectin-3: an emerging all-out player in metabolic disorders and their complications. Glycobiology, 25(2), 136-150.10.1093/glycob/cwu11125303959Search in Google Scholar

39. Rhodes DH, Pini M, Castellanos KJ, Montero-Melendez T, Cooper D, Perretti M, et al. (2013). Adipose tissue specific modulation of galectin expression in lean and obese mice: Evidence for regulatory function. Obesity (Silver Spring), 21, 310-319.10.1002/oby.20016361079323401338Search in Google Scholar

40. Butscheid M, Hauptvogel P, Fritz P, Klotz U, Alscher D. (2007). Hepatic expression of Galectin-3 and RAGE in patients with liver disease. J Clin Pathol, 60, 415–418.10.1136/jcp.2005.032391200111716775125Search in Google Scholar

41. Jeftic I, Jovicic N, Pantic J, Arsenijevic N, Lukic ML, Pejnovic N. (2015). Galectin-3 Ablation Enhances Liver Steatosis, but Attenuates Inflammation and IL-33-Dependent Fibrosis in Obesogenic Mouse Model of Nonalcoholic Steatohepatitis. Mol Med, 21, 453-465.10.2119/molmed.2014.00178455952826018806Search in Google Scholar

42. Volarevic V, Milovanovic M, Ljujic B, Pejnovic N, Arsenijevic N, Nilsson U, et al. (2012). Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology, 55(6), 1954-1964.10.1002/hep.2554222213244Search in Google Scholar

43. Tiegs G, Hentschel J, Wendel A. (1992). A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest, 90(1), 196–203.10.1172/JCI1158364430811634608Search in Google Scholar

44. Kaplan MM, Gershwin ME. (2005). Primary biliary cirrhosis. The New England Journal of Medicine, 353(12), 1261–1273.10.1056/NEJMra04389816177252Search in Google Scholar

45. Gershwin ME, Mackay IR. (2008). The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology, 47(2), 737-745.Search in Google Scholar

46. Chuang YH, Lan RY, Gershwin ME. (2009). The immunopathology of human biliary cell epithelium. Semin Immunopathol, 31,323-331.10.1007/s00281-009-0172-519533127Search in Google Scholar

47. Kimura Y, Leung PS, Kenny TP, Van De Water J, Nishioka M, Giraud AS, et al. (2002). Differential expression of intestinal trefoil factor in biliary epithelial cells of primary biliary cirrhosis. Hepatology, 36(5), 1227-1235.10.1053/jhep.2002.3615712395334Search in Google Scholar

48. Sasaki M, Nakanuma Y. (2010). Biliary Epithelial Apoptosis, Autophagy, and Senescence in Primary Biliary Cirrhosis. Hepatitis Research and Treatment, 2010, 205128.10.1155/2010/205128298986221152179Search in Google Scholar

49. Mensah-Brown EP, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu DK, et al. (2009). Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol, 130, 83-88.10.1016/j.clim.2008.08.02418845486Search in Google Scholar

50. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, et al. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol, 182, 1167-1173.10.4049/jimmunol.182.2.116719124760Search in Google Scholar

51. Takenaka Y, Fukumori T, Raz A. (2004). Galectin-3 and metastasis. Glycoconj J, 19, 543-549.10.1023/B:GLYC.0000014084.01324.15Search in Google Scholar

52. Miyazaki J, Hokari R, Kato S, Tsuzuki Y, Kawaguchi A, Nagao S, et al. (2002). Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep, 9(6), 1307-1312.10.3892/or.9.6.1307Search in Google Scholar

53. Jiang S-S, Weng D-S, Wang Q-J, Pan Ke, Zhang Y-J, Li Y-Q, et al. (2014). Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med, 12, 273.Search in Google Scholar

54. Thijssen VL, Heusschen R, Caers J, Griffioen AW. (2015). Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta, 1855, 235–247.10.1016/j.bbcan.2015.03.003Search in Google Scholar

55. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. (2010). Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol, 176, 2067-2081.10.2353/ajpath.2010.090353Search in Google Scholar

56. Cheng CL, Hou HA, Lee MC, Liu CY, Jhuang JY, Lai YJ, et al. (2013). Higher bone marrow LGALS3 expression is an independent unfavorable prognostic factor for overall survival in patients with acute myeloid leukemia. Blood, 121, 3172–3180.10.1182/blood-2012-07-443762Search in Google Scholar

57. Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH, et al. (2006). Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res, 12(22), 6709-6715.10.1158/1078-0432.CCR-06-0758Search in Google Scholar

58. de Oliveira JT, Ribeiro C, Barros R, Gomes C, de Matos AJ, Reis CA, et al. (2015). Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis. PLoS One, 10(7), e0134458.10.1371/journal.pone.0134458Search in Google Scholar

59. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. (2000). Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res, 6, 1389-1393.Search in Google Scholar

60. Saussez S, Lorfevre F, Lequeux T, Laurent G, Chantrain G, Vertongen F, et al. (2008). The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol, 44, 86-93.10.1016/j.oraloncology.2006.12.014Search in Google Scholar

61. Vereecken P, Zouaoui Boudjeltia K, Debray C, Awada A, Legssyer I, Sales F, et al. (2006). High serum galectin-3 in advanced melanoma: preliminary results. Clin Exp Dermatol, 31, 105-109.10.1111/j.1365-2230.2005.01992.xSearch in Google Scholar

62. Takenaka Y, Inohara H, Yoshii T, Oshima K, Nakahara S, Akahani S, et al. (2003). Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett, 195(1),111–119.10.1016/S0304-3835(03)00056-9Search in Google Scholar

63. Elad-Sfadia G, Haklai R, Balan E, Kloog Y. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem, 279(33), 34922–34930.10.1074/jbc.M31269720015205467Search in Google Scholar

64. Nakayama R, Kuroda J, Taniyama N, Yamamoto-Sugitani M, Wada S, Kiyota M, et al. (2014). Suppression of SERPINA1-albumin complex formation by galectin-3 overexpression leads to paracrine growth promotion of chronic myelogenous leukemia cells. Leuk Res, 38(1), 103–108.10.1016/j.leukres.2013.07.02623953881Search in Google Scholar

65. Khaldoyanidi S, Glinsky V, Sikora L, Glinskii A, Mossine V, Quinn T, et al. (2003). MDA-MB-435 human breast carcinoma cell homo-and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem, 278(6), 4127–4134.10.1074/jbc.M209590200Search in Google Scholar

66. Boscher C, Zheng Y, Lakshminarayan R, Johannes L, Dennis J, Foster L, et al. (2012). Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem, 287(39), 32940–32952.10.1074/jbc.M112.353334Search in Google Scholar

67. Boscher C, Nabi I. (2013). Galectin-3-and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell, 24(13), 2134–2145.10.1091/mbc.e13-02-0095Search in Google Scholar

68. Zhang D, Chen Z-G, Liu S-H, Dong Z-Q, Dalin M, Bao S-S, et al. (2013). Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating b-catenin. Acta Pharmacol Sin, 34(1), 176–184.10.1038/aps.2012.150Search in Google Scholar

69. Tsuboi K, Shimura T, Masuda N, Ide M, Tsutsumi S, Yamaguchi S, et al. (2007). Galectin-3 expression in colorectal cancer: relation to invasion and metastasis. Anticancer Res, 27(4B), 2289–2296.Search in Google Scholar

70. Kim H, Lin H, Biliran H, Raz A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res, 59(16), 4148–4154.Search in Google Scholar

71. Matarrese P, Tinari N, Semeraro M, Natoli C, Iacobelli S, Malorni W. (2000). Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett, 473(3), 311–315.10.1016/S0014-5793(00)01547-7Search in Google Scholar

72. Takenaka Y, Fukumori T, Yoshii T, Oka N, Inohara H, Kim H-RC, et al. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol, 24(10), 4395–4406.10.1128/MCB.24.10.4395-4406.200440047515121858Search in Google Scholar

73. Nangia-Makker, Wang Y, Raz T, Tait L, Balan V, Hogan V, et al. (2010). Cleavage of galectin-3 by matrix metallo proteases in duces angiogenesis in breast cancer. Int J Cancer, 127(11), 2530–2541.10.1002/ijc.25254333485720162566Search in Google Scholar

74. Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A. (2004). Galectin-3, a novel binding partner of betacatenin. Cancer Res, 64(18), 6363-6367.10.1158/0008-5472.CAN-04-181615374939Search in Google Scholar

75. Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, et al. (2009). Galectin-3 mediates nuclear betacatenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res, 69(4), 1343-1349.10.1158/0008-5472.CAN-08-4153299040019190323Search in Google Scholar

76. Harazono Y, Kho DH, Balan V, Nakajima K, Zhang T, Hogan V, et al. (2014). Galectin-3 leads to attenuation of apoptosis through Bax heterodimerization in human thyroid carcinoma cells. Oncotarget, 5(20), 9992-10001.10.18632/oncotarget.2486425945325393982Search in Google Scholar

77. Cheng YL, Huang WC, Chen CL, Tsai CC, Wang CY, Chiu WH, et al. (2011). Increased galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochem Biophys Res Commun, 412, 334-340.10.1016/j.bbrc.2011.07.09921821001Search in Google Scholar

78. Cheong TC, Shin JY, Chun KH. (2010). Silencing of galectin-3 changes the gene expression and augments the sensitivity of gastric cancer cells to chemotherapeutic agents. Cancer Sci, 101, 94-102.10.1111/j.1349-7006.2009.01364.x19843071Search in Google Scholar

79. Lee YK, Lin TH, Chang CF, Lo YL. (2013). Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma. PLoS One, 8(11), e82478.10.1371/journal.pone.0082478384114324303084Search in Google Scholar

80. Califice S, Castronovo V, Van Den Brule F. (2004). Galectin-3 and cancer. Int J Oncol, 25, 983–92.Search in Google Scholar

81. Friedl P, Alexander S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 147(5), 992–1009.10.1016/j.cell.2011.11.01622118458Search in Google Scholar

82. Nangia-Makker P, Balan V, Raz A. (2008). Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron, 1(1), 43–51.10.1007/s12307-008-0003-6265434719308684Search in Google Scholar

83. Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, et al. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem, 282, 773–781.10.1074/jbc.M60686220017090543Search in Google Scholar

84. Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, et al. (2009). Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res, 69, 6799–6806.10.1158/0008-5472.CAN-09-1096274161019690136Search in Google Scholar

85. Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, et al. (2010). Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumor cell homotypic aggregation and prevents anoikis. Mol Cancer, 9:154.Search in Google Scholar

86. Radosavljevic G, Jovanovic I, Majstorovic I, Mitrovic M, Lisnic V, Arsenijevic N, et al. (2011). Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis, 28(5), 451–462.10.1007/s10585-011-9383-y21442355Search in Google Scholar

87. Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, et al. (2014). Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis, 31, 661-673.10.1007/s10585-014-9657-224952269Search in Google Scholar

88. More SK, Srinivasan N, Budnar S, Bane SM, Upadhya A, Thorat RA, et al. (2015). N-glycans and metastasis in galectin-3 transgenic mice, Biochemical and Biophysical Research Communications, 460, 302-307.10.1016/j.bbrc.2015.03.03025791476Search in Google Scholar

89. Markowska AI, Liu FT, Panjwani N. (2010). Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med, 207, 1981–1993.10.1084/jem.20090121293117220713592Search in Google Scholar

90. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. (2013). The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 138, 105–115.10.1111/imm.12036357576323216602Search in Google Scholar

91. Motz GT, Coukos G. (2013). Deciphering and reversing tumor immune suppression. Immunity, 39, 61–73.10.1016/j.immuni.2013.07.005378239223890064Search in Google Scholar

92. Demotte N, Wieers G, VanDer Smissen P, Moser M, Schmidt C, Thielemans K, et al. (2010). A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res, 70, 7476–7488.10.1158/0008-5472.CAN-10-076120719885Search in Google Scholar

93. Chen HY, Fermin A, Vardhana S, Weng IC, Lo KF, Chang EY, et al. (2009). Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci USA, 106, 14496–14501.10.1073/pnas.0903497106273279519706535Search in Google Scholar

94. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, et al. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res, 63, 8302–8311.Search in Google Scholar

95. Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. (2015). Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol Res, 3(4), 412-423.10.1158/2326-6066.CIR-14-0150439050825691328Search in Google Scholar

96. Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y, et al. (2011). A novel strategy for evasion of NK cell immunity by tumours expressing core 2 O-glycans. EMBO J, 30, 3173–3185.10.1038/emboj.2011.215316018921712812Search in Google Scholar

97. Wang JM, Cheng YQ, Shi L, Ying RS, Wu XY, Li GY, et al. (2013). KLRG1 negatively regulates natural killer cell functions through the Akt pathway in individuals with chronic hepatitis C virus infection. J Virol, 87(21), 11626-11636.10.1128/JVI.01515-13380733723966413Search in Google Scholar

98. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, et al. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol, 182, 1167–1173.10.4049/jimmunol.182.2.116719124760Search in Google Scholar

99. Fermino ML, Dias FC, Lopes CD, Souza MA, Cruz ÂK, Liu FT, et al. (2013). Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection. Eur J Immunol, 43(7), 1806-1817.10.1002/eji.20134338123592449Search in Google Scholar

100. Orentas RJ, Kohler ME, Johnson BD. (2006). Suppression of anti-cancer immunity by regulatory T cells: back to the future. Semin Cancer Biol, 16, 137–149.10.1016/j.semcancer.2005.11.007Search in Google Scholar

101. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, et al. (2005). CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med, 202, 1075–1085.10.1084/jem.20051511Search in Google Scholar

102. Murugaiyan G, Saha B. (2009). Protumor vs antitumor functions of IL-17. J Immunol, 183(7), 4169-4175.10.4049/jimmunol.0901017Search in Google Scholar

103. Ikeda H, Old LJ, Schreiber RD. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 13, 95–109.10.1016/S1359-6101(01)00038-7Search in Google Scholar

104. Xu Z, Hurchla MA, Deng H, Uluckan O, Bu F, Berdy A, et al. (2009). Interferon-gamma targets cancer cells and osteoclasts to prevent tumor-associated bone loss and bone metastases. J Biol Chem, 284, 4658–4666.10.1074/jbc.M804812200264097319059914Search in Google Scholar

105. Mitra-Kaushik S, Harding J, Hess J, Schreiber R, Ratner L. (2004). Enhanced tumorigenesis in HTLV-1 tax-transgenic mice deficient in interferon-gamma. Blood, 104, 3305–3311.10.1182/blood-2004-01-026615292059Search in Google Scholar

106. Kakuta S, Tagawa Y, Shibata S, Nanno M, Iwakura Y. (2002). Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology, 105, 92–100.10.1046/j.0019-2805.2001.01342.x178264011849319Search in Google Scholar

107. Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol, 190, 3427–3437.10.4049/jimmunol.120212223455499Search in Google Scholar

108. Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC, et al. (2013). Galectin-3 modulates th17 responses by regulating dendritic cell cytokines. Am J Pathol, 183, 1209–1222.10.1016/j.ajpath.2013.06.017379168723916470Search in Google Scholar

109. Newlaczyl AU, Yu L-G. (2011). Galectin-3 – A jack-of-all-trades in cancer. Cancer Letters, 313, 123–128.10.1016/j.canlet.2011.09.00321974805Search in Google Scholar

110. Song L, Tang J-W, Owusu L, Sun M-Z, Wu J, Zhang J. (2014). Galectin-3 in cancer. Clinica Chimica Acta, 431, 185–191.10.1016/j.cca.2014.01.01924530298Search in Google Scholar

111. Gabius HJ, Kayser K. (2014). Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol, 9:4.Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other