Cite

1. Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell. 100; 57-70.10.1016/S0092-8674(00)81683-9Search in Google Scholar

2. Sotiriou C, Pusztai L. (2009). Gene-expression signatures in breast cancer. N Engl J Med. 360; 790-800.10.1056/NEJMra0801289Search in Google Scholar

3. Acharya A, Das I, Chandhok D, Saha T. (2010). Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid Med Cell Longev. 3; 23-34.10.4161/oxim.3.1.10095Search in Google Scholar

4. Milner JA. (2004). Molecular targets for bioactive food components. J Nutr. 134; 2492S-2498S.Search in Google Scholar

5. Fenech M, Ferguson LR. (2001). Vitamins/minerals and genomic stability in humans. Mut Res. 475; 1-6.10.1016/S0027-5107(01)00069-0Search in Google Scholar

6. Ivetic M, Velicki R, Popovic M, Cemerlic-Adjic N, Babovic SS, Velicki L. (2010). Dietary influence on breast cancer. Journal of BUON. 15(3); 455-461.Search in Google Scholar

7. Siewit CL, Gengler B, Vegas E, Puckett R, Louie MC. (2010). Cadmium promotes breast cancer cell proliferation by potentiating the interaction between Er_ and c-Jun. Molecular Mol Endocrinol. 24(5); 981-992.10.1210/me.2009-0410Search in Google Scholar

8. Gallagher CM, Chen JJ, Kovach JS. (2010). Enviromental cadmium and breast cancer risk. Aging. 2(11); 804-814.10.18632/aging.100226Search in Google Scholar

9. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. (2006). Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 98(12); 896-873.10.1093/jnci/djj233Search in Google Scholar

10. Sandstead HH. (1994). Understanding zinc: recent observations and interpretations. J Lab Clin Med. 124(3); 322-327.Search in Google Scholar

11. Heyneman CA. (1996). Zinc deficiency and taste disorders. Ann Pharmacother. 30(2); 186-187.Search in Google Scholar

12. HoE, Ames BN. (2002). Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci U S A. 99(26); 16770-1675.10.1073/pnas.222679399Search in Google Scholar

13. Fuwa K, Wacker WE, Druyan R, Bartholomay AF, Vallee BL. (1960). Nucleic Acids and Metals II: Transition Metals as Determinants of the Conformation of Ribonucleic Acids. Proc Natl Acad Sci USA. 46; 1298-1307.10.1073/pnas.46.10.1298Search in Google Scholar

14. Paski SC, Xu Z. (2001). Labile intracellular zinc is associated with 3T3 cell growth. J Nutr Biochem. 12; 655-661.10.1016/S0955-2863(01)00188-7Search in Google Scholar

15. Andreini C, Banci L, Bertini I, Rosato A. (2006). Counting the zinc-proteins encoded in the human genome. J Proteome Res. 5; 196-201.10.1021/pr050361jSearch in Google Scholar

16. Sekler I, Sensi SL, Hershfinkel M, Silverman WF. (2007). Mechanism and regulation of cellular zinc transport. Mol Med. 13; 337-343.10.2119/2007-00037.SeklerSearch in Google Scholar

17. Gaither LA, Eide DJ. (2001). Eukaryotic zinc transporters and their regulation. Biometals. 14; 251-270.Search in Google Scholar

18. McClelland RA, Manning DL, Gee JM, Wishler P, Robertson JF, Ellis IO, Blamey RW, Nicholson RI. (1998). Oestrogen-regulated gene sin breast cancer: Association of pLIV1 with response to endocrine therapy. Br _ Cancer. 77; 1653-1656.10.1038/bjc.1998.271Search in Google Scholar

19. Vašák M, Hasler DW. (2000). Metallothioneins: new functional and structural insights. Curr Opin Chem Biol. 4(2); 177-183.Search in Google Scholar

20. Andreini C, Banci L, Bertini I, Rosato A. (2006). Counting the zinc-proteins encoded in the human genome. J Proteome Res. 5(1); 196-201.10.1021/pr050361jSearch in Google Scholar

21. Liuzzi JP, Cousins RJ. (2004). Mammalian zinc transporters. Annu Rev Nutr. 24; 151-172.Search in Google Scholar

22. DeWys W, Pories W. (1972). Inhibition of spectrum of animal tumors by dietary zinc deficiency. J Natl Cancer Inst. 48(2); 375-381.Search in Google Scholar

23. McQuitty JT Jr, DeWys WD, Monaco L, Strain WH, Rob CG, Apgar J, Pories WJ. (1970). Inhibition of tumor growth by dietary zinc deficiency. Cancer Res. 30(5); 1387-1390.Search in Google Scholar

24. Chakravarty PK, GhoshA, Chowdhury JR. (1976). Zinc in human malignances. Neoplasma. 33(1); 85-90.Search in Google Scholar

25. Mulay IL, Roy R, Knox BE, Suhr NH, Delaney WE. (1971). Trace-metal analysis of cancerous and non cancerous human tissues. J Natl Cancer Inst. 47(1); 1-13.Search in Google Scholar

26. Chasapis CT, Luotsidou AC, Spiliopoulou, Stefanidou ME. (2013). Zinc and human health: an update. Arch Toxicol. 86(4); 521-534.Search in Google Scholar

27. Margalioth EJ, Schenker JG, Chevion M. 1983. Cooper and zinc levels in normal and malignant tissues. Cancer. 52(5); 866-872.10.1002/1097-0142(19830901)52:5<868::AID-CNCR2820520521>3.0.CO;2-KSearch in Google Scholar

28. Alam S, Kelleher SL. (2012). Cellular mechanisms of zinc dysregulation: _ perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutritiens. 4(8); 875-903. 10.3390/nu4080875Search in Google Scholar

29. El-Tanani MK, Green CD. (1995). Oestrogen-induced genes, pLIV-1 and pS2, respond divergently to other steroid hormones in MCF-7 cells. Mol Cell Endocrinol. 111(1); 75-81.10.1016/0303-7207(95)03550-QSearch in Google Scholar

30. Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI. (2003); Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J. 375(Pt1); 51-59.10.1042/bj20030478Search in Google Scholar

31. Kagara N, Tanaka N, Noguchi S, Hirano T. (2007). Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci. 98(5); 692-697.10.1111/j.1349-7006.2007.00446.xSearch in Google Scholar

32. Zhao L, Chen W, _aylor KM, Cai B, Li X. (2007). LIV-1 suppression inhibits HeLa cell invasion by targeting ERK/2-Snail/Slug pathway. Biochem Biophys Res Commun. 363(1); 82-88.10.1016/j.bbrc.2007.08.127Search in Google Scholar

33. Kelleher SL, Seo YA, Lopez V. (2009). Mammary gland zinc metabolism: regulation and dysregulation. Genes Nutr. 4(2); 83-94.10.1007/s12263-009-0119-4Search in Google Scholar

34. Lichten LA, Cousins RJ. (2009). Mammalian zinc transporters: nutritional and physiologic regulation. Annu rev nutr. 29; 153-176.Search in Google Scholar

35. McClelland RA, Manning DL, Gee JM, Willsher P, Robertson JF, Ellis IO, Blamey RW, Nicholson RI. (1998). Oestrogen-regulated genes in breast cancer: _ssociation of pLIV1 with response to endocrine therapy. Br J Cancer. 77(10); 1653-1656.10.1038/bjc.1998.271Search in Google Scholar

36. Manning DL, McClelland RA, Gee JM, Chan Cm, Green CD, Blamey RW, Nicholson RI. (1993). The role of four oestrogen-responsive genes, pLIV1, pS2, pSYD3 and pSYD8, in predicting responsiveness to endocrine therapy in primary breast cancer. Eur J Cancer. 29A(10); 1462-1468.10.1016/0959-8049(93)90021-7Search in Google Scholar

37. Taylor KM, Nicholson RI. (2003). The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophysic Acta. 1611(1-2); 16-30.Search in Google Scholar

38. Egeblad M, Werb Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2(3); 161-174.10.1038/nrc745Search in Google Scholar

39. Lopez V, Foolad F, Kelleher SL. (2011). ZnT2-overexpression represses the cytotoxic effects of zinc hyperaccumulation in malignant metallothionein-null T47D breast tumor cells. Cancer Lett. 304(1); 41-51.10.1016/j.canlet.2011.01.027Search in Google Scholar

40. Truong-Tran AQ, Ho LH, Chai F, Zalewski PD. (2000). Cellular zinc fluxes and the regulation of apoptosis/genedirected cell death. J Nutr. 130(5S Suppl); 1459-1466.10.1093/jn/130.5.1459SSearch in Google Scholar

41. Seo YA, Lopez V, Kelleher SL. (2011). A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am J Physiol Cell Physiol. 300(6); 1479-1489.10.1152/ajpcell.00420.2010Search in Google Scholar

42. Prasad AS, Beck FW, Endre L, Handschu W, Kukuruga M, Kumar G. (1996). Zinc deficiency affects cell cycle and deoxythymidine kinase gene expression in HUT-78 cells. J Lab Clin Med. 128(1); 51-60.10.1016/S0022-2143(96)90113-4Search in Google Scholar

43. Paski SC, Xu Z. (2002). Growth factor stimulated cell proliferation is accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Can J Physiol Pharmacol. 80(8); 790-795.10.1139/y02-101Search in Google Scholar

44. Franklin RB, Costello LC. (2009). The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem. 106(5); 750-757.Search in Google Scholar

45. Provinciali M, Di Stefano G, Fabris N. (1995). Dosedependent opposite effect of zinc on apoptosis in mouse thymocytes. Int J Immunopharmacol. 17(9); 735-744.10.1016/0192-0561(95)00063-8Search in Google Scholar

46. Djekovic A, Petrovic B, Bugarcic ZD, Puchta R, van Eldik R. (2012). Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules. Dalton Trans. 41(13); 3633-3641.10.1039/c2dt11843b22318647Search in Google Scholar

47. Wang Y, He QY, Sun RW, Che CM, Chiu JF. (2005). GoldIII porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res. 65(24); 11553-11564.10.1158/0008-5472.CAN-05-286716357165Search in Google Scholar

48. Lum CT, Liu X, Sun RW, Li XP, Peng Y, He ML, Kung HF, Che CM, Lin MC. (2010). Gold(III) porphyrin 1a inhibited nasopharyngeal carcinoma metastasis in vivo and inhibited cell migration and invasion in vitro. Cancer Lett. 294(2); 159-166.10.1016/j.canlet.2010.01.03320163914Search in Google Scholar

49. Jacques A, Lebrun C, Casini A, Kieffer I, Proux O, Latour JM, Sénèque O. (2015). Reactivity of Cys4 zinc finger domains with gold(III) complexes: insights into the formation of „gold fingers“. Inorg Chem. 54(8); 4104-4113.10.1021/acs.inorgchem.5b0036025839236Search in Google Scholar

50. Arsenijevic N. (2012). Biological Effects of Gold(III) Complexes Tested in Vitro and in Vivo. In: Kretsinger RH, Uversky VN & Permiyakov EA. Encyclopedia of Metalloproteins ( pp. 933-935). New York, Heidelberg, Dordrecht, London:Springer.Search in Google Scholar

51. Jain S, Coulter JA, Hounsell AR, Butterworth KT, Mc- Mahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ, O’Sullivan JM, Hirst DG. (2011). Cell- Specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radial Oncol Biol Phys. 79(2); 531-539.10.1016/j.ijrobp.2010.08.044301517221095075Search in Google Scholar

52. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11(3); 169-183.10.1080/1071754049043389515204636Search in Google Scholar

53. Huschka R, Zuloaga J, Knight MW, Brown LV, Nordlander P, Halas NJ. (2011). Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J Am Chem. Soc. 133(31); 12247-12255.10.1021/ja204578e410830221736347Search in Google Scholar

54. Gibson JD, Khanal BP, Zubarev ER. (2007). Paclitaxelfunctionalized gold nanoparticles. J Am Chem Soc. 129(37); 11653-11661.10.1021/ja075181k17718495Search in Google Scholar

55. Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F. (2011). Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl. 50(4); 891-895.Search in Google Scholar

56. You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. (2012). Photothermalchemotherapy with doxorubicin-loaded hollow gold nanospheres: _ platform for near-infrared light-trigged drug release. J Control Release. 158(2); 319-328. 10.1016/j.jconrel.2011.10.028346323922063003Search in Google Scholar

57. Lee J, Chatterjee DK, Lee MH, Krishnan S. (2014). Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 347(1); 46-53.10.1016/j.canlet.2014.02.006414206224556077Search in Google Scholar

58. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. (2011). Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyaninegold nanoparticle conjugates. Photochem Photobiol Sci. 10(5); 822-831.10.1039/c1pp05014a21455532Search in Google Scholar

59. Xu C, Wang B, Sun S. (2009). Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 131(12); 4216-4217.10.1021/ja900790v267139719275156Search in Google Scholar

60. Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloid Surf B Biointerfaces. 95; 195-200. 10.1016/j.colsurfb.2012.02.03922445746Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other