Cite

1. Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M. Stem Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation 2013; 22(8):1309-23.10.3727/096368912X657260Search in Google Scholar

2. Lukovic D, Moreno Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Concise review: human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells 2012; 30(9):1787-92.10.1002/stem.1159Search in Google Scholar

3. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008; 25:E2.10.3171/FOC.2008.25.11.E2Search in Google Scholar

4. McTigue DM, Tani M, Krivacic K et al. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 1998;53:368–376.10.1002/(SICI)1097-4547(19980801)53:3<368::AID-JNR11>3.0.CO;2-1Search in Google Scholar

5. Grossman SD, Rosenberg LJ, Wrathall JR. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 2001;168:273–282.10.1006/exnr.2001.7628Search in Google Scholar

6. Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009. 27(1):78-87.10.1634/stemcells.2008-0543Search in Google Scholar

7. Erceg S, Ronaghi M, Oria M, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 2010; 28:1541–1549.10.1002/stem.489Search in Google Scholar

8. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005; 49:385–396.10.1002/glia.20127Search in Google Scholar

9. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012; 122(11):3824-34.10.1172/JCI64124Search in Google Scholar

10. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.10.1016/j.cell.2006.07.024Search in Google Scholar

11. Lukovic D, Moreno-Manzano V, Klabusay M, Stojkovic M, Bhattacharya SS, Erceg S. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Front Genet. 2014; 14;5:132.10.3389/fgene.2014.00132403019524860598Search in Google Scholar

12. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7:618–630.10.1016/j.stem.2010.08.012365682120888316Search in Google Scholar

13. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem cell 2009; 4:381–384.10.1016/j.stem.2009.04.00519398399Search in Google Scholar

14. Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 2010; 107:12704–12709.10.1073/pnas.0910106107290654820615974Search in Google Scholar

15. Nori S, Okada Y, Yasuda A, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA 2011;108: 16825–16830.10.1073/pnas.1108077108318901821949375Search in Google Scholar

16. Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010; 43: 255–63.10.3109/0891693090330564119845478Search in Google Scholar

17. Hawryluk GW, Mothe AJ, Chamankhah M, Wang J, Tator C, Fehlings MG. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012; 21(3):432–447.10.1089/scd.2011.024222013972Search in Google Scholar

18. Himes BT, Neuhuber B, Coleman C et al. Recovery of function following grafting of human bone marrowderived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 2006; 20(2):278–296.10.1177/154596830628697616679505Search in Google Scholar

19. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012; 21(12):2222–2238.10.1089/scd.2011.0596341136122085254Search in Google Scholar

20. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006; 98(5):1076–1084.10.1002/jcb.2088616619257Search in Google Scholar

21. Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp. Neurol. 2012; 235:78–90.Search in Google Scholar

22. Kim HJ, Lee HJ, Kim SH. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: Secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma 2010; 27:131–138.10.1089/neu.2008.081819508155Search in Google Scholar

23. Sasaki M, Radtke C, Tan AM, et al. BDNF hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci. 2009; 29:14932–14941.10.1523/JNEUROSCI.2769-09.2009282527619940189Search in Google Scholar

24. Martinez AM, Goulart CO, Ramalho Bdos S, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6(2):179-94.10.4252/wjsc.v6.i2.179399977624772245Search in Google Scholar

25. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013; 2013:786475.10.1155/2013/786475358124623484157Search in Google Scholar

26. Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006; 15:675–687.10.3727/00000000678346438117269439Search in Google Scholar

27. Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007; 25:2066–2073.10.1634/stemcells.2006-080717464087Search in Google Scholar

28. Chernykh ER, Stupak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull. Exp. Biol. Med. 2007; 143:543–547.Search in Google Scholar

29. Kumar A, Kumar S, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp. Clin. Transplant. 2009; 7:241– 248.Search in Google Scholar

30. Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study. Exp. Hematol. 2006; 34:130–13.Search in Google Scholar

31. Cristante AF, Barros-Filho TE, Tatsui N, et al. Stem cells in the treatment of chronic spinal cord injury: Evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009; 47:733–738.10.1038/sc.2009.2419333245Search in Google Scholar

32. Deda H, Inci MC, Kürekçi AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrowderived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008; 10:565–574.10.1080/1465324080224179718615345Search in Google Scholar

33. Rao YJ, Zhu WX, Du ZQ, et al. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res. 2014; 13(2):4124-9.10.4238/2014.May.30.724938704Search in Google Scholar

34. García-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J. Neurosci. Res. 2004; 75:632–641.Search in Google Scholar

35. Kubasak MD, Jindrich DL, Zhong H, et al. OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain 2008; 131:264–276.10.1093/brain/awm267291674118056162Search in Google Scholar

36. Munoz-Quiles C, Santos-Benito FF, Llamusí MB, Ramon-Cueto A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J. Neuropathol. Exp. Neurol. 2009; 68:1294–1308.Search in Google Scholar

37. Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD. Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. J. Rehabil. Res. Dev. 2008; 45:141–151.Search in Google Scholar

38. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000; 25:425–435.10.1016/S0896-6273(00)80905-8Search in Google Scholar

39. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001; 88(1-2):203-13.10.1016/S0169-328X(01)00044-4Search in Google Scholar

40. Mayeur A, Duclos C, Honoré A, et al. Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS One 2013; 8(4):e62860.10.1371/journal.pone.0062860363474423638158Search in Google Scholar

41. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005; 128:2951–2960.10.1093/brain/awh65716219671Search in Google Scholar

42. Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008; 131:2376–2386.10.1093/brain/awn173252544718689435Search in Google Scholar

43. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: A pilot clinical study. J. Spinal Cord Med 2006; 29:191–203.10.1080/10790268.2006.11753874186481116859223Search in Google Scholar

44. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013; 22(9):1591-612.10.3727/096368912X66353224007776Search in Google Scholar

45. Zheng Z, Liu G, Chen Y, Wei S. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury. Neural Regen Res. 2013; 8(30):2849-55.Search in Google Scholar

46. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant. 2007; 16:133–150.10.3727/000000007783464678Search in Google Scholar

47. Moreno-Manzano V, Rodríguez-Jiménez, FJ, García-Roselló M, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 2009; 27:733–743.10.1002/stem.2419259940Search in Google Scholar

48. Barnabe´-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell 2008; 3:16–24.10.1016/j.stem.2008.06.01118593555Search in Google Scholar

49. Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28(1):93-9.Search in Google Scholar

50. Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 2005; 80:182–190.Search in Google Scholar

51. Parr A. M, Kulbatski I, Zahir T, et al. (2008). Transplanted adult spinal cordderived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155:760–770.Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other