Open Access

Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air


Cite

[1] Kingery C.N., Bulmash G., Airblast parameters from TNT spherical air burst and hemispherical surface burst, ARBRL-TR-02555. MD: U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1984.Search in Google Scholar

[2] Randers-Pehrson G., Bannister K., Airblast loading model for DYNA2D and DYNA3D, ARL-TR-1310, Army Research Laboratory, 1997.Search in Google Scholar

[3] LS-DYNA®KEYWORD USER’S MANUAL VOLUME II Material Models. 01/02/15 (r:5991) LS-DYNA Dev, Livermore Software Technology Corporation (LSTC), 2015.Search in Google Scholar

[4] Zakrisson B., Wikman B., Häggblad H., Numerical simulations of blast loads and structural deformation from near-field explosions in air, International Journal of Impact Engineering, 2011, 38, 597–612.10.1016/j.ijimpeng.2011.02.005Search in Google Scholar

[5] Johnson G.R., Cook W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 23 Apr. 1983.Search in Google Scholar

[6] Flis L., Sperski M., Badania odporności osłon warstwowych zbudowanych ze stali kadłubowych na ostrzał pociskami 12,7 mm, ZN AMW nr 4 Gdynia, 2013.10.5604/0860889X.1097962Search in Google Scholar

[7] Sonntag R.E., Borgnakke C., Van Wylen G.J., Fundamentals of thermodynamics, 6th ed., Wiley, Cop., New York, 2003.Search in Google Scholar

[8] Lewis B., Manual for LS-DYNA Soil Material Model 147, Federal Highway Administrator, McLEAN, VA, publication No. FHWA-HRT-095 (2004).Search in Google Scholar

[9] Arulmoli K., Muraleetharan M., Hossain M., Velacs verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report, Tech. rep., The Earth Technology Corp., Project No. 90-0562. Irvine, California (March 1992).Search in Google Scholar

[10] Dobrociński S., Stabilność rozwiązań zagadnień odporności udarowej konstrukcji, Biblioteka Problemów Eksploatacji, AMW, Gdynia 2000.Search in Google Scholar

[11] http://blog2.d3view.com/sph-contact-definitions/Search in Google Scholar

[12] ANSYS, AUTODYN®, Explicit Software for Nonlinear Dynamics, SPH User Manual & Tutorial, Revision 4.3, Century Dynamics, 2005.Search in Google Scholar

[13] Andersen K.H., Børsum Hernandez F., Numerical Simulations of Docol 600 DL Steel Plates Subject to Blast Loading, Department of Structural Engineering, NTNU, Trondheim, 2013.Search in Google Scholar

[14] Baranowski P., Małachowski J., Numerical study of selected military vehiclechassis subjected to blast loading in terms of tire strength improving, Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 63, No. 4, 2015.10.1515/bpasts-2015-0099Search in Google Scholar

[15] Mazurkiewicz Ł., Małachowski J., Baranowski P., Blast loading influence on load carrying capacity of I-column, Engineering Structures 104 (2015) 107–115.10.1016/j.engstruct.2015.09.025Search in Google Scholar

[16] Mazurkiewicz Ł., Małachowski J., Baranowski P., Optimization of protective panel for critical supporting elements,Composite Structures 134 (2015) 493–505.10.1016/j.compstruct.2015.08.069Search in Google Scholar

eISSN:
2083-831X
ISSN:
0137-6365
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics