Open Access

Evolution of Genome Size in Conifers


Cite

ADAMS, M. C., S. E. CELNIKER and R. A. HOLT et al. (2000): The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.10.1126/science.287.5461.218510731132Search in Google Scholar

AHUJA, M. R. (2001): Recent advances in molecular genetics of forest trees. Euphytica 121: 173-195.10.1023/A:1012226319449Search in Google Scholar

AHUJA, M. R. (2005): Polyploidy in gymnosperms: Revisited. Silvae Genet. 54: 59-69.10.1515/sg-2005-0010Search in Google Scholar

AHUJA, M, R., M. E. DEVEY, A. T. GROVER, K. D. JERMSTAD and D. B. NEALE (1994): Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor. Appl. Genet. 88: 279-282.Search in Google Scholar

AHUJA, M. R. and D. B. NEALE (2002): Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet. 51: 93-100.Search in Google Scholar

AUKLAND, L. D., J. S. JOHNSTON, H. J. PRICE and F. E. BRIDGEWATER (2001): Stability of nuclear DNA content among divergent and isolated populations of Fraser fir. Can. J. Bot. 79: 1375-1378.10.1139/cjb-79-11-1375Search in Google Scholar

BALAKIREV, E. and F. J. AYALA (2003): Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 37: 123-151.10.1146/annurev.genet.37.040103.10394914616058Search in Google Scholar

BENNETT, M. D. and I. J. LEITCH (2003): Angiosperm DNA C-values database. http://www.rbgkew.org.uk/cval/homepage.html.Search in Google Scholar

BENNETT, M. D. and I. J. LEITCH (2005): Plant genome size research: A field in focus. Ann. Bot. 95: 1-6.Search in Google Scholar

BENNETT, M. D. and J. B. SMITH (1991): Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B. 334: 309-345.Search in Google Scholar

BENNETT, M. D., I. J. LEITCH and L. HANSON (1998): DNA amounts in two samples of angiosperm weeds. Ann. Bot. 82 (Supplement A): 121-134.10.1006/anbo.1998.0785Search in Google Scholar

BENNETT, M. D., I. J. LEITCH, H. J. PRICE and J. S. JOHNSON (2003): Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25 % larger than the Arabidopsis Genome Initiative estimate of ~125 MB, Ann. Bot. 91: 547-557.10.1093/aob/mcg057424224712646499Search in Google Scholar

BENNETZEN, J. L. (2002): Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115: 29-36.10.1023/A:1016015913350Search in Google Scholar

BENNETZEN, J. L. and E. A. KELLOGG (1997): Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509-1514.10.1105/tpc.9.9.150915702912237393Open DOISearch in Google Scholar

BENNETZEN, J. L., J. MA and K. M. DEVOS (2005): Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95: 127-132.Search in Google Scholar

BERLYN, G. P., J. L. ROYTE and A. O. ANOROU (1990): Cytophotometric differentiation of high elevation spruces: physiological and ecological implications. Stain Tech. 65: 1-14.10.3109/105202990091056022360212Search in Google Scholar

BLANC, G. and K. H. WOLFE (2004): Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16: 1667-1678.10.1105/tpc.02134551415215208399Open DOISearch in Google Scholar

BOBOLA, M. S., D. E. SMITH and A. S. KLEIN (1992): Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol. Biol. Evol. 9: 125-137.Search in Google Scholar

BOWE, L. M., G. COAT and C.W. DEPAMPHILIS (2000): Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Nat. Acad. Sci. USA 97: 4092-4097.10.1073/pnas.97.8.40921815910760278Open DOISearch in Google Scholar

BROWN, G. R., C. H. NEWTON and J. E. CARLSON (1998): Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41: 560-565.10.1139/g98-054Open DOISearch in Google Scholar

BROWN, G. R., E. E. KADEL and D. I. BASSONI et al. (2001): Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159: 799-809. 10.1093/genetics/159.2.799146182111606554Search in Google Scholar

BURLEY, J. (1965): Karyotype analysis of Sitka spruce, Picea sitchensis (Bong.) Carr. Silvae Genet. 14: 127-132.Search in Google Scholar

CAVALLINI, A., I. NATALI, G. CIONINI and D. GENNAI (1993): Nuclear DNA variability within Pisum sativum (Leguminoseae): nucleotypic effects on plant growth. Heredity 70: 561-565.10.1038/hdy.1993.82Open DOISearch in Google Scholar

CAUSSE, M. A., T. M. FULTON and Y. G. CHO et al. (1994): Saturated molecular map of rice genome based on as interspecific backcross population. Genetics 138: 1251-1274. 10.1093/genetics/138.4.125112062617896104Search in Google Scholar

CHAW, S.-M., C. L. PARKINSON, Y. CHENG, T. M. VINCENT and J. D. Palmer (2000): Seed plant phylogeny inferred from all three plant genomes: Morphology of extant gymnosperms and origin of Gnetales from conifers. Proc. Nat. Acad. Sci. USA 97: 4086-4091.10.1073/pnas.97.8.40861815710760277Open DOISearch in Google Scholar

CULLIS, C. A., G. P. GRIESSEN, S. W. GORMAN and R. D. TEASDALE (1988): The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. In: Molecular Genetics of Forest Trees. Proc. 2nd Workshop IUFRO Working Party s2.04.06. CHELIAK, W. M. and YAPA, A. C. (Eds). Canadian Forestry Service PNFI Inf. Rep. PI-X-80, pp. 34-40.Search in Google Scholar

DELEVORYAS, T. (1980): Polyploidy in gymnosperms. In: Polyploidy - Biological Relevance. LEWIS, W. H. (Ed). Plenum Press, New York, pp. 215-218.10.1007/978-1-4613-3069-1_12550825Search in Google Scholar

DE LUC, A., R. A. ADAMS and M. ZHANG (1999): Using random amplification of polymorphic DNA for taxonomic evaluation of Pfitzer Juniperus. HortScience 34: 1123-1125.10.21273/HORTSCI.34.6.1123Search in Google Scholar

DEVEY, M. E., T. A. FIDDLER, B.-H. LIU, S. J. KNAPP and D. B. NEALE (1994): An RFLP linkage map for loblolly pine based on three generation outbred pedigree. Theor. Appl. Genet. 88: 273-278.Search in Google Scholar

DEUTSCH, M. and M. LONG (1999): Intron-exon structure of eukaryotic model organisms. Nucleic Acid Res. 27: 3219-3228.10.1093/nar/27.15.321914855110454621Search in Google Scholar

DHILLON, S. S. (1987): DNA in tree species. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and10.1007/978-94-017-0994-1_18Search in Google Scholar

DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 298-313.Search in Google Scholar

DHIR, N. K. and J. P. MIKSCHE (1974): Intraspecific variation of nuclear DNA content in Pinus resinosa Ait. Can. J. Genet. Cytol. 16: 77-83.10.1139/g74-007Open DOISearch in Google Scholar

DIETRICH, F. S., S. VOEGELI, S. BRACHAT et al. (2004): The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304-307.10.1126/science.1095781Open DOISearch in Google Scholar

DREWRY, A. (1988): The G-banded karyotype of Pinus resinosa Ait. Silvae Genet. 37: 218-221.Search in Google Scholar

ECHT, C. S. and P. MAY-MARQUARDT (1997): Survey of microsatellite DNA in pine. Genome 40: 9-17.10.1139/g97-002Open DOISearch in Google Scholar

ELSIK, C. G. and C. G. WILLIAMS (2000): Retroelements contribute to the excess of low-cop number DNA in pine. Mol. Genet. Genomics 264: 47-55.Search in Google Scholar

ELSIK, C. G. and WILLIAMS, C. G. (2001): Families of clustered microsatellites in a conifer genome. Mol. Genet. Genomics 265: 535-542.Search in Google Scholar

FARJON, A. (1998): World Checklist and Bibliography of Conifers. The Royal Botanic Garden, Kew.Search in Google Scholar

FESCHOTTE, C., N. JIANG and S. R. Wessler (2002): Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3: 329-341.10.1038/nrg793Open DOISearch in Google Scholar

FINNEGAN, D. J. (1989): Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103-107. 10.1016/0168-9525(89)90039-5Open DOISearch in Google Scholar

FISHER, R. A. (1935): The sheltering of lethals. Am. Nat. 69: 446-455.Search in Google Scholar

FLAVELL, R. (1986): The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol. Biol. 3: 251-274. Search in Google Scholar

FORCE, A., M. LYNCH, F. B. PICKETT, A. AMORES, Y. YAN and J. POSTLETHWAIT (1999): Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.10.1093/genetics/151.4.1531146054810101175Search in Google Scholar

FRIESEN, N., A. BRANDES and J. S. HESLOP-HARRISON (2001): Diversity, origin and distribution of retrotransposons (gypy and copia) in conifers. Mol. Biol. Evol. 18: 1176-1188.10.1093/oxfordjournals.molbev.a00390511420359Open DOISearch in Google Scholar

GAUT, B. S. (2001): Patterns of chromosomal duplication in maize and their implications for comparative maps of grasses. Genome Res. 11: 55-66.10.1101/gr.16060131101411156615Search in Google Scholar

GAUT, B. S. and J. F. DOEBLEY (1997): DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809-6814.10.1073/pnas.94.13.68092124011038553Open DOISearch in Google Scholar

GIBSON, T. J. and J. SPRING (2000): Evidence in favor of ancient octoploidy in the vertebrate genome. Biochem Soc. Tans. 28: 259-264.10.1042/bst028025910816139Open DOISearch in Google Scholar

GILL, G. P., G. R. BROWN and D. B. NEALE (2003): A sequence mutation in the cinamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotech. J. 1: 253-258.Search in Google Scholar

GOFF, S. A., D. RICKE and T.-H. LAN et al. (2002): A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.10.1126/science.106827511935018Search in Google Scholar

GOVINDRAJU, D. R. and C. A. CULLIS (1992): Ribosomal DNA variation among populations of Pinus rigida Mill. (patch pine) ecosystem. I. Distribution of copy numbers. Heredity 69: 133-140.10.1038/hdy.1992.106Search in Google Scholar

GRAHAM, M. J., C. D. NICKELL and A. L. RAYBURN (1994): Relationship between genome size and maturity group in soybean. Theor. Appl. Genet. 88: 429-432.Search in Google Scholar

GRANT, V. (1981): Plant Speciation. (Second Edition). Columbia University Press, New York.10.7312/gran92318Search in Google Scholar

GRATTAPAGLIA, D. and H. D. BRADSHAW (1994): Nuclear DNA amounts of commercially important Eucalyptus species. Can. J. For. Res. 24: 1074-1078.Search in Google Scholar

GREGORY, T. R. (2001): Animal genome size database. http://www.genomesiz.com.Search in Google Scholar

GREGORY, T. R. (2005): The C-value enigma in plants and animals: A review of parallels and an appeal for partenership. Ann. Bot. 95: 133-146.Search in Google Scholar

GROTKOPP, E., M. REJÁNEK, M. J. SANDERSON and T. L. ROST (2004): Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705-1729.10.1111/j.0014-3820.2004.tb00456.x15446425Open DOISearch in Google Scholar

GUGERLI, F., C. SPERISON and U. BÜCHLER et al. (2001): The evolutionary split of Pinaceae from other conifers: Evidence from an intron loss and a multigene phylogeny. Mol. Phylogenet. Evol. 21: 167-175.10.1006/mpev.2001.100411697913Open DOISearch in Google Scholar

HAIR, J. B. (1968): The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J. Bot. 6: 277-284.Search in Google Scholar

HALDANE, J. B. S. (1933): The part played by recurrent mutations in evolution. Am. Nat. 67: 5-9.Search in Google Scholar

HANCOCK, J. M. (2002): Genome size and accumulation of simple sequence repeats: Implications of new data from genome sequencing projects. Genetica 115: 93-103.10.1023/A:1016028332006Search in Google Scholar

HIZUME, M., T. KONDO, F. SHIBATA and R. ISHIZUKU (2001): Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307-311.10.1508/cytologia.66.307Open DOISearch in Google Scholar

HIZUME, M., F. SHIBATA, Y. MATSUSAKI and Z. GARAJOVA (2002): Chromosome identification and comparative karyotype analysis of four Pinus species. Theor. Appl. Genet. 105: 491-497.Search in Google Scholar

HUGHES, A. L. (1999): Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of duplication early in vertebrate history. J. Mol. Biol. 48: 565-578.10.1007/PL0000649910198122Search in Google Scholar

International Human Genome Sequencing Consortium. (2001): Initial sequencing and analysis of human genome. Nature 409: 860-921.10.1038/3505706211237011Search in Google Scholar

JOYNER, K. L., X.-R. WANG, J. S. JOHNSTON, H. J. PRICE and C. G. WILLIAMS (2001): DNA content for Asian pines parallels new world relatives. Can. J. Bot. 79: 192-196.10.1139/cjb-79-2-192Search in Google Scholar

KALENDAR, R., J. TANKSKANEN, S. IMMONEN, E. NEVO and A. H. SCHULMAN (2000): Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607. 10.1073/pnas.110587497Search in Google Scholar

KAMM, A., R. L. DOUDRICK, J. S. HESLOP- ARRISON and T. SCHMIDT (1996): The genomic and physical organization of Ty1-Copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708-2713.10.1073/pnas.93.7.2708Search in Google Scholar

KARVONEN, P., M. KARJALAINEN and O. SOVOLAINEN (1993): Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88: 59-68.10.1007/BF02424452Search in Google Scholar

KAVARNHEDEN, A., V. A. ALBERT and P. ENGSTROM (1998): Molecular evolution of cdc2 pseudogene in spruce (Picea). Plant Mol. Biol. 36: 767-774.Search in Google Scholar

KHOSHOO, T. N. (1959): Polyploidy in gymnosperms. Evolution 13: 24-39. 10.1111/j.1558-5646.1959.tb02991.xSearch in Google Scholar

KHOSHOO, T. N. (1961): Chromosome numbers in gymnosperms. Silvae Genet. 10: 1-9.Search in Google Scholar

KIDWELL, M. G. (2002): Transposable elements and evolution of genome size in eukaryotes. Genetica 115: 49-63.10.1023/A:1016072014259Search in Google Scholar

KIM, J. M., S. VANGURI, J. D. BOEKE and D. F. VOYTAS (1998): Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464-478. 10.1101/gr.8.5.464Search in Google Scholar

KINLAW, C. S., D. E. HARRY and R. R. SEDEROFF (1990): Isolation and characterization of alcohol dehydrogenase cDNA from Pinus radiata. Can. J. For. Res. 20: 1343-1350.Search in Google Scholar

KINLAW, C. S. and D. B. NEALE (1997): Complex gene families in pine genomes. Trends Plant Sci. 2: 356-359.10.1016/S1360-1385(97)84624-9Open DOISearch in Google Scholar

KNIGHT, C. A., N. A. MOLINARI and D. A. PETROV (2005): The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95: 177-190.Search in Google Scholar

KOSSACK, D. S. and C. S. KINLAW (1999): IFG, a gypsy-like retrotransposon in Pinus (Pinaceae) has an extensive history in pines. Plant Mol. Biol. 39: 417-426.Search in Google Scholar

KRIEBEL, H. B. (1985): DNA sequence components of the Pinus strobus nuclear genome. Can. J. For. Res. 15: 1-4.Search in Google Scholar

KRIEBEL, H. B. (1993): Molecular structure of forest trees. In: Clonal Forestry I. Genetics and Biotechnology. AHUJA, M. R. and LIBBY, W. J. (Eds). Springer Verlag, Berlin, pp. 224-240. 10.1007/978-3-642-84175-0_14Search in Google Scholar

KRUTOVSKY, K.V., M. TROGGIO, G. R. BROWN, K. D. JERMSTAD and D. B. NEALE (2004): Comparative mapping in Pinaceae. Genetics 168: 447-461.10.1534/genetics.104.028381144810815454556Search in Google Scholar

KUMAR, A. and J. L. BENNETZEN (1999): Plant retrotransposons. Annu. Rev. Genet. 33: 479-532.10.1146/annurev.genet.33.1.479Open DOISearch in Google Scholar

EL-LAKANY, M. H. and O. SZIKLAI (1971): Intraspecific variation in nuclear characteristics of Douglas-fir. Advan. Front. Plant Sci. 28: 363-378.Search in Google Scholar

LEITCH, I. J. and M. D. BENNETT (2002): New insights into patterns of nuclear genome size evolution in plants. Current Genomics 3: 551-562.10.2174/1389202023350183Open DOISearch in Google Scholar

LEITCH, I. J. and M. D. BENNETT (2004): Genome downsizing in polyploid plants. Biol. J. Linnean Soc. 82: 651-663.10.1111/j.1095-8312.2004.00349.xOpen DOISearch in Google Scholar

LEITCH, I. J., L. HANSON, M. WINFIELD, J. PARKER and M. D. BENNETT (2001): Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88: 843-849.Search in Google Scholar

LEITCH, I. J., D. E. SOLTIS, P. S. SOLTIS and M. D. BENNETT (2005): Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95: 207-217.Search in Google Scholar

L’HOMME, Y., A. SÉGUIN and F. M. TREMBLAY (2000): Different classes of retrotransposons in coniferous spruce species. Genome 43: 1084-1089. 10.1139/g00-077Search in Google Scholar

LONG, E. O. and I. B. DAWID (1980): Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727-764.Search in Google Scholar

LYNCH, M. (2002): Gene duplication and evolution. Science 297: 945-947.10.1126/science.1075472Search in Google Scholar

LYNCH, M. and J. S. CONERY (2000): The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.10.1126/science.290.5494.1151Search in Google Scholar

MAKALOWSKI, W. (2001): Are we polyploids? A brief history of one hypothesis. Genome Research 11: 667-670. 10.1101/gr.188801Open DOISearch in Google Scholar

MARTIN, A. P. (1999): Increasing genomic complexity by gene duplication and origin of vertebrates. Am. Nat. 154: 111-128.Search in Google Scholar

MARTIN, A. (2001): Is tetralogy true? Lack of support for the ‘one-to-four’ rule. Mol. Biol. Evol. 18: 89-93.10.1093/oxfordjournals.molbev.a003723Open DOISearch in Google Scholar

MASTERSON, J. (1994): Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science 264: 421-423.10.1126/science.264.5157.421Search in Google Scholar

MCCLURE, M. A. (1999): The retroid agents: disease, function and evolution. In: Origin and Evolution of Viruses.Search in Google Scholar

DOMINGO, E., WEBSTER, R. and HOLLAND, J. (Eds). Academic Press, London, pp. 163-195.Search in Google Scholar

MCLYSAGHT, A., L. ENRIGHT, L. SKRABANEK and K. H. WOLFE (2000): Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17: 22-36.10.1002/(SICI)1097-0061(200004)17:1<22::AID-YEA5>3.0.CO;2-SSearch in Google Scholar

MCLYSAGHT, A., K. HOKAMP and K. H. WOLFE (2002): Extensive genomic duplication during early chordate evolution. Nature Genetics 31: 200-204.10.1038/ng88412032567Open DOISearch in Google Scholar

MERGEN, F. and B. A. THIELGES (1967): Intraspecific variation in nuclear volume in four conifers. Evolution 21: 720-724.10.1111/j.1558-5646.1967.tb03429.x28563067Open DOISearch in Google Scholar

MIKSCHE, J. P. (1968): Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can. J. Genet. Cytol. 10: 590-600.Search in Google Scholar

MIKSCHE, J. P. (1971): Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma 32: 343-352.10.1007/BF002852485573671Search in Google Scholar

MIKSCHE, J. P. and Y. HOTTA (1973): DNA base composition and repetitious DNA in several conifers. Chromosoma 41: 29-36. 10.1007/BF00284072Open DOISearch in Google Scholar

MILLAR, C. I. (1998): Early evolution of pines. In: Ecology and Biogeography of Pinus. RICHARDSON, D. M. (Ed). Cambridge University Press, Cambridge, pp. 69-91.Search in Google Scholar

MILLER, C. N. (1977): Mesozoic conifers. Bot. Rev. 43: 217-280. Search in Google Scholar

MIROV, N. T. (1967): The Genus Pinus. Ronald Press, New York.Search in Google Scholar

MORIYAMA, E. N., D. A. PETROV and D. L. HARTL (1998): Genome size and intron size in Drosophila. Mol. Biol. Evol. 15: 770-773.10.1093/oxfordjournals.molbev.a0259809615458Open DOISearch in Google Scholar

MURRAY, B. G. (1998): Nuclear DNA amounts in gymnosperms. Ann. Bot. 82 (Supplement A): 3-15.10.1006/anbo.1998.0764Search in Google Scholar

MURRAY, B. G., N. FRIESEN and J. S. HESLOP-HARRISSON (2002): Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann. Bot. 89: 483-489.Search in Google Scholar

NEALE, D. B. and K.V. KRUTOVSKY (2004): Comparative genome mapping in trees: The group of conifers. In: Biotechnology in Agriculture and Forestry. Vol. 55. Molecular Marker Systems. LÖRZ, H. and WENZEL, G. (Eds). Springer Verlag, Berlin, pp. 267-277.Search in Google Scholar

NEWTON, R. J., M. G. MESSINA, H. J. PRICE and I. WAKAMIYA-NOBORI (1999): DNA content, water relations, and environmental stress in gymnosperms. In: Handbook of Plant and Crop Stress. Second Edition. PRESSARAKLI, M. (Ed). Marcel Decker, New York, pp. 659-673.10.1201/9780824746728.ch31Search in Google Scholar

OBERMAYER, R., I. J. LEITCH, L. HANSON and M. D. BENNETT (2002): Nuclear DNA C-values in 30 species double the estimated familial representation in pteridophytes. Ann. Bot. 90: 209-217.Search in Google Scholar

OHNO, S. (1970): Evolution by Gene Duplication. Springer Verlag, Berlin.10.1007/978-3-642-86659-3Search in Google Scholar

OHRI, D. (1998): Genome size variation and plant systematic. Ann. Bot. 82 (Supplement A): 75-83.10.1006/anbo.1998.0765Search in Google Scholar

OHRI, D. and M. R. AHUJA (1990): Giemsa C-banded karyotype in Quercus L. (oak). Silvae Genet. 39: 216-219. Search in Google Scholar

OHRI, D., and T. N. KHOSHOO (1986): Genome size in gymnosperms. Pl. Syst. Evol. 153: 119-132.Search in Google Scholar

OHTA, T. (1990): How gene families evolve. Theor. Pop. Biol. 37: 213-219.Search in Google Scholar

OTTO, S. P. and WHITTON, J. (2000): Polyploidy incidence and evolution. Annu. Rev. Genet. 34: 401-437.10.1146/annurev.genet.34.1.40111092833Open DOISearch in Google Scholar

PATERSON, A. H., J. E. BOWERS and B. A. CHAPMAN (2004): Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Nat. Acad. Sci. USA 101: 903-998.10.1073/pnas.0307901101Search in Google Scholar

PERRY, D. L. and G. R. FURNIER (1996): Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc. Natl, Acad. Sci. USA 93: 13020-13023.10.1073/pnas.93.23.13020Open DOISearch in Google Scholar

PETROV, D. A. (2001): Evolution of genome size: Newapproaches to an old problem. Trends Genet. 17: 23-28.10.1016/S0168-9525(00)02157-0Search in Google Scholar

PREMOLI, A. C., T. KITZBERGER and T. T. VEBELEN (2000): Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet. 1: 57-66. 10.1023/A:1010181603374Search in Google Scholar

PRICE, H. J. (1988): DNA content variation among higher plants. Ann. Missouri Bot. Garden 75: 1248-1257.Search in Google Scholar

PRINCE, V. E. and F. B. PICKETT (2002): Splitting pairs: The diverging fates of duplicate genes. Nature Rev. Genet. 3: 827-837.10.1038/nrg92812415313Open DOISearch in Google Scholar

PROKOPOWICH, C. D., T. R. GREGORY and T. J. CREASE (2003): The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48-50.10.1139/g02-10312669795Search in Google Scholar

RAKE, A.V., J. P. MIKSCHE, R. B. HALL and K. M. HANSEN (1980): DNA reassocitation kinetics of four conifers. Can. J. Genet. Cytol. 22: 69-79.Search in Google Scholar

RAMSEY, J. and D. W. SCHEMSKE (2002): Neoplolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33: 589-639.10.1146/annurev.ecolsys.33.010802.150437Open DOISearch in Google Scholar

RAYBURN, A. L., H. J. PRICE, J. D. SMITH and J. R. GOLD (1985): C-band heterochromatin and DNA content in Zea mays. Am. J. Bot. 72: 1610-1617.10.1002/j.1537-2197.1985.tb08425.xSearch in Google Scholar

ROGERS, S. O. and A. J. BENDICH (1987): Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacers. Plant Mol. Biol. 9: 509-520.10.1007/BF0001588224277137Open DOISearch in Google Scholar

RUBIN, G. M., M. D. YANDELL and J. R. WORTMAN et al. (2000): Comparative genomic of the eukaryotes. Science 287: 2204-2215.10.1126/science.287.5461.2204275425810731134Search in Google Scholar

SANKOFF, D. (2001): Gene and genome duplication. Curr. Opin. Genet. Dev. 11: 681-684.10.1016/S0959-437X(00)00253-7Open DOISearch in Google Scholar

SANMIGUEL, P., A. TIKHONOV and Y.-K. JIN et al. (1996): Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.10.1126/science.274.5288.765Search in Google Scholar

SANMIGUEL, P. and J. L. BENNETZEN (1998): Evidence that a recent increase in maize genome size was caused by the massive amplification of intergenic retrotransposons. Ann. Bot. 82 (Supplement A): 37-44.10.1006/anbo.1998.0746Search in Google Scholar

SAX, K. and H. J. SAX (1933): Chromosome number and morphology in the conifers. J. Arnold Arboretum 14: 356-375.10.5962/bhl.part.9959Open DOISearch in Google Scholar

SAYLOR, L. C. and H. A. SIMONS (1970): Karyology of Sequoia sempervirens; karyotype and accessory chromosomes. Cytologia 35: 294-303.10.1508/cytologia.35.294Open DOISearch in Google Scholar

SCHLARBAUM, S. E. and T. TSUCHIYA (1984): A chromosome study of coast redwood, Sequoia sempervirens (D. Don.) Endl.). Silvae Genet. 33: 56-62.Search in Google Scholar

SCHMIDT, A., R. L. DOUDRICK, J. S. HESLOP-HARRISON and T. SCHMIDT (2000): The contribution of short repeats of low sequence complexity to large conifer genomes. Theor. Appl. Genet. 101: 7-14.Search in Google Scholar

SEDEROFF, R. R., A.-M. STOMP and B. GWYNN et al. (1987): Application of DNA recombinant techniques in pines: Amolecular approach to genetic engineering in forestry. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 314-329. Search in Google Scholar

SEWELL, M. M., B. K. SHERMAN and D. B. NEALE (199): A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321-330.10.1093/genetics/151.1.321Search in Google Scholar

SHEN, B., N. CARNEIRO and L. TORRES-JEREZ et al. (1994): Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol. Biol. 26: 1085-1101. 10.1007/BF00040691Open DOISearch in Google Scholar

SILJAK-YAKOVIEV, S., M. CERBAH and J. COULAUD et al. (2002): Nuclear DNA content, base composition, heterochromatin and rDNA in Picea amorica and Picea abies. Theor. Appl. Genet. 104: 505-512.10.1007/s001220100755Open DOISearch in Google Scholar

SKRABANEK, L. and K. H. WOLFE (1998): Eukaryote genome duplication - where’s the evidence? Curr. Opin. Genet. Dev. 8: 694-700.Search in Google Scholar

SMITH, D. N. and M. E. DEVEY (1994): Occurrence andinheritance of microsatellite loci in Pinus radiata. Genome 37: 977-983.10.1139/g94-138Search in Google Scholar

SOLTIS, D. E. and P. S. SOLTIS (1999): Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14: 348-352. 10.1016/S0169-5347(99)01638-9Open DOISearch in Google Scholar

SOLTIS, D. E., P. S. SOLTIS, M. D. BENNETT and I. J. LEITCH (2003a): Evolution of genome size in angiosperms. Am. J. Bot. 90: 1596-1603.10.3732/ajb.90.11.159621653334Open DOISearch in Google Scholar

SOLTIS, D. E., P. S. SOLTIS and J. TATE (2003b): Advances in the study of polyploidy since plant speciation. New Pytologist 161: 173-191.10.1046/j.1469-8137.2003.00948.xSearch in Google Scholar

STUART-ROGERS, C. and A. J. FLAVELL (2001): The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol. Biol. Evol. 18: 155-163.Search in Google Scholar

STEBBINS, G. L. (1948): The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95-98.10.1126/science.108.2796.9517808724Open DOISearch in Google Scholar

STEBBINS, G. L. (1950): Variation and Evolution in Plants. Columbia University Press, New York.10.7312/steb94536Search in Google Scholar

STEBBINS, G. L. (1966): Chromosomal variation and evolution. Science 152: 1463-1469.10.1126/science.152.3728.146317788022Search in Google Scholar

STEWART, W. N. and G.W. ROTHWELL (1993): Paleobotany and the Evolution of Plants. Second Edition. Cambridge University Press, Cambridge. The Arabidopsis Genome Initiative (2000): Analysis of thegenome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Search in Google Scholar

THOMAS, C. A. (1970): The genetic organization of chromosomes. Annu. Rev. Genet. 5: 237-256.10.1146/annurev.ge.05.120171.00132116097657Search in Google Scholar

THOMSON, W. F. and M. G. MURRAY (1981): The nuclear genome: structure and function. In: The Histochemistry of Plants. Vol. 6. STUMPF, P. K. and CONN, E. E. (Eds). Academic Press, London, pp. 1-81.Search in Google Scholar

TURCOTTE, K., S. SRINIVASAN and T. BUREAU (2001): Survey of transposable elements from rice genome sequences. Plant J. 25: 169-179.10.1046/j.1365-313x.2001.00945.x11169193Open DOISearch in Google Scholar

VAN DE PEER, Y., J. S. TATLOR and A. MEYER (2003): Are all fishes ancient polyploids? J. Structural and Functional Genomics 2: 65-73.10.1023/A:1022652814749Search in Google Scholar

VANDERPOELE, K., C. SIMILLION and Y. VAN DE PEER (2003): Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15: 2192-2202.10.1105/tpc.01401918134012953120Open DOISearch in Google Scholar

VICIENT, C. M., A. SUONIEMI, ANAMTHAWAT-JÓNSSON, J. TANSKANEN, A. BEHARAV, E. NEVO and A. H. SCHULMAN (1999): Retrotransposon BARE-1 and its role in genome evolution in the genus Horduem. Plant Cell 11: 1769-1784.10.1105/tpc.11.9.176914430410488242Open DOISearch in Google Scholar

VOYTAS, D. F., M. P. CUMMINGS, A. KONIECZNY, F. M. ASUBEL and S. RODERMEL (1992): Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124-7128.10.1073/pnas.89.15.7124496581379734Search in Google Scholar

VIEIRA, C., D. LEPETIT, S. DUMONT and C. BIEMONT (1999): Make up of transposable elements following Drosophila simulans worldwide colonization. Mol. Biol. Evol. 16: 1251-1255.10.1093/oxfordjournals.molbev.a02621510486980Open DOISearch in Google Scholar

VINOGRADOV, A. E. (1999): Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49: 376-384.Search in Google Scholar

WAKAMIYA, I., R. J. NEWTON, J. S. JOHNSTON and H. J. PRICE (1993): Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80: 1235-1241.10.2307/2445706Open DOISearch in Google Scholar

WALBOT, V. and D. A. PETROV (200): Gene galaxies in the maize genome. Proc. Natl. Acad. Sci. USA 98: 8163-8164.10.1073/pnas.1612787983741311459945Search in Google Scholar

WALSH, B. (2003): Population-genetic models of the fates of duplicate genes. Genetica 118: 279-294.10.1023/A:1024194802441Open DOISearch in Google Scholar

WATERSTON, R. and J. SULSTON (1995): The genome of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 10836-10840.10.1073/pnas.92.24.10836405267479894Open DOISearch in Google Scholar

WENDEL, J. F. (2000): Genome evolution in polyploids. Plant Mol. Biol. 42: 225-249.Search in Google Scholar

WENDEL, J. F., R. C. CRONN, I. ALVAREZ, B. LIU, R. L. SMALL and D. S. SENCHINA (2002): Intron size and genome size in plants. Mol. Biol. Evol. 19: 2346-2352.10.1093/oxfordjournals.molbev.a00406212446829Open DOISearch in Google Scholar

WENDEL, J. F. and S. R. WESSLER (2000): Retrotransposonmediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA 97: 6250-6252.10.1073/pnas.97.12.62503399610841529Open DOISearch in Google Scholar

WOLFE, K. H. (2001): Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2: 333-341.10.1038/3507200911331899Open DOISearch in Google Scholar

WRIGHT, J.W. (1976): Introduction to Forest Genetics. Academic Press, New York.10.1016/B978-0-12-765250-4.50005-8Search in Google Scholar

YU, Z., S. J. WRIGHT and T. E. BUREAU (2000): Mutatorlike elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156: 2019-2031.10.1093/genetics/156.4.2019Search in Google Scholar

ZHANG, J. (2003): Evolution by gene duplication: An update. Trends Ecol. Evol. 18: 292-298.10.1016/S0169-5347(03)00033-8Open DOISearch in Google Scholar

eISSN:
2509-8934
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science