Cite

[1] European Parliament and Council Directive 2010/31/EU on building energy efficiency. The Official Journal of the European Union 2010:153:13-35. Search in Google Scholar

[2] Final energy consumption by end use in the EU-27. Available: www.eea.europa.eu/data-and-maps/indicators/energy-efficiency-and-energy-consumption-5/assessment/ [23.03.2017.] Search in Google Scholar

[3] EU research project. RIBuild. Available: ribuild.eu [25.01.2018.] Search in Google Scholar

[4] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate Change and Building Energy Efficiency - the key role of Residents. Environmental and Climate Technologies 2016. doi:10.1515/rtuect-2016-0004 Search in Google Scholar

[5] Ma Z., Cooper P., Daly D., Ledo L. Existing building retrofits: methodology and state-of-the-art. Energy Build. 2012:55:889-902. doi:10.1016/j.enbuild.2012.08.018 Search in Google Scholar

[6] Jerman M., Cerny R. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build. 2012:53:39-46. doi:10.1016/j.enbuild.2012.07.002 Search in Google Scholar

[7] Zagorskas J., Paliulis G. M., Buriskiene M., Venckauskaite J., Rasmussen T. V. Energetic Refurbishment of Historic Brick Buildings: Problems and Opportunities. Environmental and Climate Technologies 2013. doi:10.2478/rtuect-2013-0012 Search in Google Scholar

[8] Purvins R., Biseniece E., Blumberga A. Laboratory investigation of Latvian historic brick and measurements of water movement in historic masonry walls. Energy Procedia 2017:113:327-332. doi:10.1016/j.egypro.2017.04.073 Search in Google Scholar

[9] Pasek J., Kesl P. Probabilistic assessment of failure risk of the building envelope thermally insulated from the inside. Applied Mathematics and Computation 2015:267:108-118. doi:10.1016/j.amc.2015.05.080 Search in Google Scholar

[10] Kass K., Blumberga A., Blumberga D., Zogla G., Kamenders A., Biseniece E. Pre-assessment method for historic building stock renovation evaluation. Energy Procedia 2017:113:346-353. doi:10.1016/j.egypro.2017.04.004 Search in Google Scholar

[11] Delphin software. Institute for Building Climatology. Available: www.bauklimatik-dresden.de/ [28.01.2018.] Search in Google Scholar

[12] WUFI software. Fraunhofer institute for building physics. Available: wufi.de/de [28.01.2018.] Search in Google Scholar

[13] Ibrahim M., Wurtz E., Biwole P. H., Achard P., Sallee H. (2014). Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy and Buildings, 84: 241-251. doi:10.1016/j.enbuild.2014.07.039 Search in Google Scholar

[14] Haupl P., Fechner H. Hygric material properties of porous building materials. Journal of Thermal Environment & Building Science 2003:26(3):259-284. doi:10.1177/109719603032799 Search in Google Scholar

[15] Vereecken E., Roels S. A comparison of the hygric performance of interior insulation systems: A hot box-cold box experiment. Building and Environment 2014:80:37-44. doi:10.1016/j.enbuild.2014.04.033 Search in Google Scholar

[16] Pavlik Z., Cerny R. Experimental assessment of hygrothermal performance of an interior insulation system using a laboratory technique simulating on-site conditions. Energy and Buildings 2008:40:673-678. doi:10.1016/j.enbuild.2007.04.019 Search in Google Scholar

[17] Johansson P., Geving S., Hagentoft C.-E., Jelle B. P., Rognvik E., Kalagasidis A. S., Time B. Interior insulation retrofit of a historic brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations. Building and Environment 2014:79:31-45. doi:10.1016/j.buildenv.2014.04.014 Search in Google Scholar

[18] Morelli M., Nielsen T. R., Scheffler G. A., Svendsen S. Internal Insulation of Masonry Walls with Wooden Floor Beams in Northern Humid Climate. ASHRAE, 2010. Search in Google Scholar

[19] Biseniece E., Zogla G., Kamenders A., Purvins R., Kass K., Vanaga R., Blumberga A. Thermal performance of internally insulated historic brick building in cold climate: A long term case study. Energy and Buildings 2017:152:577-586. doi:10.1016/j.enbuild.2017.07.082 Search in Google Scholar

[20] Kloseiko P., Kalamees T., Arumargi E., Kallavus U. Hygrothermal Performance of a Massive Stone Wall with Interior Insulation: an In-Situ Study for Developing a Retrofit Measure. Energy Procedia 2015:78:195-200. doi:10.1016/j.egypro.2015.11.139 Search in Google Scholar

[21] Kloseiko P., Arumagi E., Kalamees T. Hygrothermal performance of internally insulated brick wall in cold climate: A case study in a historic school building. Journal of Building Physics 2015:38(5):444-464. doi:10.1177/1744259114532609 Search in Google Scholar

[22] Walker R., Pavia S. Thermal performance of a selection of insulation materials suitable for historic buildings. Building and Environment 2015:94:155-165. doi:10.1016/j.buildenv.2015.07.033 Search in Google Scholar

[23] Bianco L., Serra V., Fantucci S., Dutto M., Massolino M. Thermal insulating plaster as a solution for refurbishing historic building envelopes: First experimental results. Energy and Buildings 2015:95:86-91. doi:10.1016/j.enbuild.2014.11.016 Search in Google Scholar

[24] Galliano R., Ghazi Wakili K., Stahl T., Binder B., Daniotti B. Performance evaluation of aerogel-based and prelite-based prototyped insulations for internal thermal retrofitting: HMT model validation by monitoring at demo scale. Energy and Buildings 2016:126:275-286. doi:10.1016/j.enbuild.2016.05.021 Search in Google Scholar

[25] WTA Wissenschaftlich - Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. Innendämmung nach WTA I - Merkblatt 6-4: Planungsleitfaden. WTA Publications, 2014. Search in Google Scholar

[26] DIN 4108-3:2014-11. Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 3: Klimabedingter Feuchteschutz - Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung. Search in Google Scholar

[27] EN 772-3:1998. Methods of test for masonry units. Determination of net volume and percentage of voids of clay masonry units by hydrostatic weighing. Search in Google Scholar

[28] EN 772-13:2000. Methods of test for masonry units. Determination of net and gross dry density of masonry units (except for natural stone). Search in Google Scholar

[29] Sedlbauer K., Krus M., Zillig W., Kunzel H. M. Mold growth prediction by computational simulation. Fraunhofer Institute for Building Physics, 2001. Search in Google Scholar

[30] Viitanen H., Vinha J., Salminen K., Ojanen T., Peuhkuri R., Paajanen L., Lahdesmaki K. Moisture and bio-deterioration risk of building materials and structures. Journal of Building Physics 2010:33(3):201-224. doi:10.1177/1744259109343511Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other