Open Access

Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus


Cite

[1] Raghubanshi A. S., Rai L., Gaur J. P., Shing J. S. Invasive al species and biodiversity in India. Curr. Sci. India. 2005:88(2):539-540.10.1136/bmj.2.3325.539-bSearch in Google Scholar

[2] Evans H. C. Parthenium hysterophorus, a review of its weed status and the possibilities for biological control. Biocontrol News and Information 1997:18(3):89N-98N.Search in Google Scholar

[3] Levine J. M., Vila M., D’Antonio C. M., Dukes J. S., Grigulis K., Lavorel S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B 2003:270:775-781. doi: 10.1098/rspb.2003.232710.1098/rspb.2003.2327169131112737654Open DOISearch in Google Scholar

[4] Belnap J., Phillips S. L. Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 2001:11(5):1261-1275. doi: 10.2307/306091810.2307/3060918Open DOISearch in Google Scholar

[5] Zavaleta E. Valuing ecosystem services lost to Tamarix invasion in the United States. Invasive Species in a Changing World. Washington: Island Press, 2000.Search in Google Scholar

[6] D’Antonio C. M. Mechanisms controlling invasion of costal plant communities by the alien succulent Carpobrotus edulis. Ecology 1993:74(1):83-95. doi: 10.2307/193950310.2307/1939503Open DOISearch in Google Scholar

[7] Kourtev P. S., Ehrenfeld J. G., Huang W. Z. Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water, Air, and Soil Pollution 1998:105:493-501. doi: 10.1023/A:100503710549910.1023/A:1005037105499Open DOISearch in Google Scholar

[8] Dassonville N., Vanderhoeven S., Vanparys V., Hayez M., Gruber W., Meerts P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008:157:131-140. doi: 10.1007/s00442-008-1054-610.1007/s00442-008-1054-618491146Search in Google Scholar

[9] Ehrenfeld J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003:6:503-523. doi: 10.1007/s10021-002-0151-310.1007/s10021-002-0151-3Open DOISearch in Google Scholar

[10] European Environment Agency (EEA). Europe 2020: a strategy for smart, sustainable and inclusive growth 2010.Search in Google Scholar

[11] Ministry of New Renewable Energy. Biomass power and cogeneration programme, 2012. Available: http://mnre.gov.in/schemes/grid-connected/biomass-powercogenSearch in Google Scholar

[12] Dhaundiyal A., Gupta V. K. The analysis of pine needles as a substrate for gasification. J. Water, Energy Environ. 2014:15:73-81. doi: 10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299Open DOISearch in Google Scholar

[13] Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science 2009:35(2):121-140. doi: 10.1016/j.pecs.2008.08.00110.1016/j.pecs.2008.08.001Open DOISearch in Google Scholar

[14] White J. E., Catallo W. J., Legendre B. L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 2011:91(1):1-33. doi: 10.1016/j.jaap.2011.01.00410.1016/j.jaap.2011.01.004Open DOISearch in Google Scholar

[15] Zhu H. M., Yan J. H., Jiang X. G., Lai Y. E., Cen K. F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials 2008:153:670-676. doi: 10.1016/j.jhazmat.2007.09.01110.1016/j.jhazmat.2007.09.011Open DOISearch in Google Scholar

[16] Koreoova Z., Juma M., Annus J., Markos J., Jelemensky L. Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers 2006:60(6):422-426. doi: 10.2478/s11696-006-0077-x10.2478/s11696-006-0077-xOpen DOISearch in Google Scholar

[17] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi: 10.1016/j.wasman.2009.03.02010.1016/j.wasman.2009.03.020Search in Google Scholar

[18] Folgueras M. B., Diaz R. M., Xiberta J., Prieto I. Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel 2003:82:2051-2055. doi: 10.1016/S0016-2361(03)00161-310.1016/S0016-2361(03)00161-3Open DOISearch in Google Scholar

[19] Mason D., Gandhi K. Formulas for calculating the calorific value of coal and coal chars: Development, tests, and uses. Fuel Processing Technology 1983:7(1):11-22. doi: 10.1016/0378-3820(83)90022-X10.1016/0378-3820(83)90022-XOpen DOISearch in Google Scholar

[20] Brown M., Dollimore D., Galwey A. K. Reactions in the Solid State. Comprehensive Chemical Kinetics (vol. 22). Amsterdam: Elsevier, 1980.Search in Google Scholar

[21] Jankovic B., Kolar-Anic L., Smiciklas I., Dimovic S., Arandelovic D. The nonisothermal thermogravimetric tests of animal bones combustion. Part. I. Kinetic analysis. Thermochimica Acta 2009:495:129-138. doi: 10.1016/j.tca.2009.06.01610.1016/j.tca.2009.06.016Open DOISearch in Google Scholar

[22] Ravi P., Vargeese A. A., Tewari S. P. Isoconversional kinetic analysis of decomposition of nitropyrazoles. Thermochimica Acta 2012:550:83-89. doi: 10.1016/j.tca.2012.10.00310.1016/j.tca.2012.10.003Open DOISearch in Google Scholar

[23] Vyazovkin S., Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun 2006:27:1515-1532. doi: 10.1002/marc.20060040410.1002/marc.200600404Open DOISearch in Google Scholar

[24] Friedman H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry Application to phenolic plastic. J. Polym. Sci. 1964:6:183-195. doi: 10.1002/polc.507006012110.1002/polc.5070060121Open DOISearch in Google Scholar

[25] Ozawa T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan 1965:38(11):1881-1886. doi: 10.1246/bcsj.38.188110.1246/bcsj.38.1881Open DOISearch in Google Scholar

[26] Flynn J. H., Wall L. A. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards 1966:70A(6):487-523. doi: 10.6028/jres.070A.04310.6028/jres.070A.043662470931824016Open DOISearch in Google Scholar

[27] Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials. ANSI/ASTM E698 - 79. ASTM: Philadelphia, 1979.Search in Google Scholar

[28] Kissinger H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957:29(11):1702-1706. doi: 10.1021/ac60131a04510.1021/ac60131a045Open DOISearch in Google Scholar

[29] Doyle C. D. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1961:5:285-292. doi: 10.1002/app.1961.07005150610.1002/app.1961.070051506Open DOISearch in Google Scholar

[30] Sbirrazzuoli N., Vincent L., Mija A., Guigo N. Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion-time curves. Chemom. Intell. Lab. Syst. 2009:96:219-226. doi: 10.1016/j.chemolab.2009.02.00210.1016/j.chemolab.2009.02.002Open DOISearch in Google Scholar

[31] Coats A. W., Redfern J. P. Kinetic parameters from thermogravimetric data. Nature 1964:201:68-69. doi: 10.1038/201068a010.1038/201068a0Open DOISearch in Google Scholar

[32] Bahng M. K., Mukarakate C., Robichaud D. J., Nimlos M. R. Current technologies for analysis of biomass thermochemical processing: a review. Anal. Chim. Acta. 2009:651:117-138. doi: 10.1016/j.aca.2009.08.01610.1016/j.aca.2009.08.01619782803Open DOISearch in Google Scholar

[33] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19:15-32. doi: 10.1515/rtuect-2017-000210.1515/rtuect-2017-0002Open DOISearch in Google Scholar

[34] Dhaundiyal A., Gangwar J. Kinetics of the thermal decomposition of pine needles. Acta Uni. Sapientiae, Agriculture and Environment 2015:7:5-22. doi: 10.1515/ausae-2015-000110.1515/ausae-2015-0001Open DOISearch in Google Scholar

[35] Gai C., Zhang Y., Chen W. T., Zhang P., Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour. Technol. 2013:150:139-148. doi: 10.1016/j.biortech.2013.09.13710.1016/j.biortech.2013.09.13724161552Open DOISearch in Google Scholar

[36] Idris S. S., Rahman N. A., Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour. Technol. 2012:123:581-591. doi: 10.1016/j.biortech.2012.07.06510.1016/j.biortech.2012.07.06522944493Open DOISearch in Google Scholar

[37] Sovizi M. R., Hajimirsadeghi S. S., Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials 2009:168:1134-1139. doi: 10.1016/j.jhazmat.2009.02.14610.1016/j.jhazmat.2009.02.146Open DOISearch in Google Scholar

[38] Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica acta 1999:340-341:53-68. doi: 10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1Open DOISearch in Google Scholar

[39] Kumar A., Wang L., Dzenis Y., Jones D., Hanna M. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 2008:32:460-467. doi: 10.1016/j.biombioe.2007.11.00410.1016/j.biombioe.2007.11.004Open DOISearch in Google Scholar

[40] Cai J. M., Liu R. H. Parametric study of the nonisothermal nth-order distributed activation energy model involved the weibull distribution for biomass pyrolysis. Journal of Thermal Analysis and Calorimetry 2007:89:971-975. doi: 10.1007/s10973-006-8266-y10.1007/s10973-006-8266-yOpen DOISearch in Google Scholar

[41] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20:23-28. doi: 10.1515/ata-2017-000510.1515/ata-2017-0005Open DOISearch in Google Scholar

[42] Lim A. C. R., Chin B. L. F., Jawad Z. A., Hii K. L. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engineering 2016:148:1247-1251. doi: 10.1016/j.proeng.2016.06.48610.1016/j.proeng.2016.06.486Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other