Open Access

Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM)


Cite

[1] Dhaundiyal A., Gupta V.K. The analysis of pine needles as a substrate for gasification. Journal of Water, Energy and Environment, Hydro Nepal 2014;15:73–81. doi: /10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299Search in Google Scholar

[2] Burnham A.K, Braun R.L. Global kinetic analysis of complex materials. Energy Fuels 1999;13:1–22. doi: 10.1021/ef980076510.1021/ef9800765Search in Google Scholar

[3] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Geochem 1995;23:931–939. doi: 10.1016/0146-6380(95)00069-010.1016/0146-6380(95)00069-0Search in Google Scholar

[4] Galgano A., Blasi C.D. Modeling wood degradation by the unreacted-core-shrinking approximation. Ind. Eng. Chem. Res, 2003;42:2101–2111.doi: 10.1021/ie020939o10.1021/ie020939oSearch in Google Scholar

[5] Ferdous D, Dalai A.K, Bej S.K. Thring R.W. Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels,2002;16:1405–1412. doi: 10.1021/ef020032310.1021/ef0200323Search in Google Scholar

[6] Khawam A., Flanagan D.R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B 2006;110:17315–1732. doi: 10.1021/jp062746a10.1021/jp062746aSearch in Google Scholar

[7] Vyazovkin S., Wight C. A. Model-free and model –fitting approaches to kinetic analysis of isothermal and non isothermal data. Thermochimica Acta. 1999;53:340–341. doi: 10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1Search in Google Scholar

[8] Nowicki L., Stolarek P., Olewski T., BedykT., Ledakowicz S. Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering,2008;29:813–825.Search in Google Scholar

[9] Mangut V., Sabio E., Ganan J., Gonzalez J. F., Ramiro A., Gonzalez C. M., Roman S., and A. Al-Kassir. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Journal of Fuel Processing Technology 2006;87:109–115. doi: 10.1016/j.fuproc.2005.08.00610.1016/j.fuproc.2005.08.006Search in Google Scholar

[10] Gunes M., Gunes S. A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data. Applied Mathematics and Computation2002;130:619. doi: 10.1016/S0096-3003(01)00124-210.1016/S0096-3003(01)00124-2Search in Google Scholar

[11] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008;87(3):414-421. doi: 10.1016/j.fuel.2007.05.00410.1016/j.fuel.2007.05.004Search in Google Scholar

[12] Li Z., Liu C., Chen Z., Qian J., Zhao W., Zhu Q. Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology2009;100:948–952. doi: 10.1016/j.biortech.2008.07.03210.1016/j.biortech.2008.07.032Search in Google Scholar

[13] Yan J. H., Zhu H. M., Jiang X. G., Chi Y., Cen K. F. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials 2009;1;162–646. doi: 10.1016/j.jhazmat.2008.05.07710.1016/j.jhazmat.2008.05.077Search in Google Scholar

[14] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. London: Proc. Phys. Soc., 1943.10.1088/0959-5309/55/3/308Search in Google Scholar

[15] Pitt G. J. The kinetics of the evolution of volatile products from coal. Fuel 1962;41:267.doi: 10.1021/ef00002a00210.1021/ef00002a002Search in Google Scholar

[16] Hanbaba P., van Heek K.H., Jüntgen H., Peters W. Non-isothermal kinetics of coal pyrolyse, Part II: extension of the theory of the evolution of gas and experimental confirmation of bituminous coal. Fuel Chemistry 1968;49:368–376.Search in Google Scholar

[17] Anthony D.B., Howard J.B. Coal Devolatilization and Hydrogasification. AIChE J. 1976;22:625–656. doi: 10.1002/aic.69022040310.1002/aic.690220403Search in Google Scholar

[18] Anthony D.B., Howard J.B., Hottel H.C., Meissner H.P. Devolatilization and Hydrogasification of Bituminous Coal. Fuel 1976;55:121–128. doi: 10.1016/0016-2361(76)90008-910.1016/0016-2361(76)90008-9Search in Google Scholar

[19] Niksa S., Lau C. W. Global Rates of Devolatilization of Various Coal Types. Combust. Flame 1993;94:293. doi: 10.1016/0010-2180(93)90075-E10.1016/0010-2180(93)90075-ESearch in Google Scholar

[20] Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels1995;9:302–7. doi: 10.1021/ef970212q10.1021/ef970212qSearch in Google Scholar

[21] Armstrong R., Kulesza B.L.J. An approximate solution to the equation x = exp(−x/ε)”. Bull. Institute of Mathematics and its Applications, 1981;17:56.Search in Google Scholar

[22] Varhegyi G., Szabo P., Antal M. J. Jr. Kinetics of charcoal devolatilization. Energy Fuels2012;16:724–731. doi: 10.1021/ef010227v10.1021/ef010227vSearch in Google Scholar

[23] Suuberg E. M. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combustion and Flame 1983;50:243–245. doi: 10.1016/0010-2180(83)90066-410.1016/0010-2180(83)90066-4Search in Google Scholar

[24] Howard J.B. In Chemistry of Coal Utilization. (M.A.Elliott, Ed) Wiley & Sons, 1981.Search in Google Scholar

[25] Bilbao R., Mastral J. F., Aldea M. E. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol.3 1997;9:53–64. doi: 10.1016/S0165-2370(96)00957-610.1016/S0165-2370(96)00957-6Search in Google Scholar

[26] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008;87(3):414–421. doi: 10.1016/j.fuel.2007.05.00410.1016/j.fuel.2007.05.004Search in Google Scholar

[27] Muller-Hagedorn M., Bockhorn H., Krebs L., Muller U. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis 2003;68–69:231–249. doi: 10.1016/S0165-370(03)00065-2Search in Google Scholar

[28] Kastanaki E., Vamvuka D., Grammelis P., Kakaras E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology2002:77–78:159–66. doi: 10.1016/S0378-3820(02)00049-810.1016/S0378-3820(02)00049-8Search in Google Scholar

[29] Gronli M. G., Varhegyi G., Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research2002;41:4201–4208. doi: 10.1021/ie020115710.1021/ie0201157Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other