Open Access

System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts


Cite

[1] Schiebahn S., Grube T., Robinius M., Tietze V., Kumar B., Stolten D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy 2015:40(12):4285–4294. doi:10.1016/j.ijhydene.2015.01.123Search in Google Scholar

[2] Gahleitner G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy 2013:38(5):2039–2061. doi:10.1016/j.ijhydene.2012.12.010Search in Google Scholar

[3] Götz M., Lefebvre J., Mörs F., McDaniel Koch A., Graf F., Bajohr S., Reimert R., Kolb T. Renewable Power-to-Gas: A technological and economic review. Renewable Energy 2016:85:1371–1390. doi:10.1016/j.renene.2015.07.066Search in Google Scholar

[4] Qadrdan M., Abeysekera M., Chaudry M., Wu J., Jenkins N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. International Journal of Hydrogen Energy 2015:40(17):5763–5775. doi:10.1016/j.ijhydene.2015.03.004Search in Google Scholar

[5] Reiter G., Lindorfer J. Evaluating CO2 sources for power-to-gas applications – A case study for Austria. Journal of CO2 Utilization 2015:10:40–49. doi:10.1016/j.jcou.2015.03.003Search in Google Scholar

[6] Cinti G., Baldinelli A., Di Michele A., Desideri U. Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel. Applied Energy 2016:162:308–320. doi:10.1016/j.apenergy.2015.10.053Search in Google Scholar

[7] Rönsch S., Schneider J., Matthischke S., Schlüter M., Götz M., Lefebvre J., Prabhakaran P., Bajohr S. Review on methanation – From fundamentals to current projects. Fuel 2016:166:276–296. doi:10.1016/j.fuel.2015.10.111Search in Google Scholar

[8] Schiebahn S., Grube T., Robinius M., Tietze V., Kumar B., Stolten D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy 2015:40(12):4285–4294. doi:10.1016/j.ijhydene.2015.01.123Search in Google Scholar

[9] Guandalini G., Campanari S., Romano M. C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment. Applied Energy 2015:147:117–130. doi:10.1016/j.apenergy.2015.02.055Search in Google Scholar

[10] Varone A., Ferrari M. Power to liquid and power to gas: An option for the German Energiewenden. Renewable and Sustainable Energy Reviews 2015:45:207–218. doi:10.1016/j.rser.2015.01.049Search in Google Scholar

[11] Blumberga D., Vigants E., Romagnoli F., Blumberga A., Kalnins S.N., Veidenbergs I. Hybrid System with Biomethanation for Wind Energy Accumulation in the Baltic Countries. Energy Procedia 2015:75:754–759. doi:10.1016/j.egypro.2015.07.507Search in Google Scholar

[12] Blumberga A., Timma L., Romagnoli F., Blumberga D. Dynamic modelling of a collection scheme of waste portable batteries for ecological and economic sustainability. Journal of Cleaner Production 2015:88:224–233. doi:10.1016/j.jclepro.2014.06.063Search in Google Scholar

[13] Blumberga A., Timma L., Vilgerts J., Blumberga D. Assessment of sustainable collection and recycling policy of Lead-Acid accumulators from the perspective of system dynamics modelling. Chemical Engineering Transactions 2014:39(Special Issue):649–654. doi:10.3303/CET1439109Search in Google Scholar

[14] Vilgerts J., Timma L., Blumberga A., Blumberga D., Slišane D. Application of system dynamic model for the composting of petroleum contaminated soil under various policies. Agronomy Research 2013:11(2):391–404.Search in Google Scholar

[15] Timma L., Bariss U., Blumberga A., Blumberga D. Outlining Innovation Diffusion Processes in Households Using System Dynamics. Case Study: Energy Efficiency Lighting. Energy Procedia 2015:75:2859–2864. doi:10.1016/j.egypro.2015.07.574Search in Google Scholar

[16] Timma L., Blumberga A., Blumberga D. Understanding the technological substitution by hybrid modelling practice: A methodological approach. Chemical Engineering Transactions 2015:45:379–384. doi:10.3303/CET1545064Search in Google Scholar

[17] Lauka D., Blumberga A., Blumberga D., Timma L. Analysis of GHG Reduction in Non-ETS Energy Sector. Energy Procedia 2015:75:2534–2540. doi:10.1016/j.egypro.2015.07.280Search in Google Scholar

[18] Blumberga A., Timma L., Lauka D., Dace E., Barisa A., Blumberga D. Achieving sustainability in non-ETS sectors using system dynamics modelling practice. Chemical Engineering Transactions 2015:45:871–876. doi:10.3303/CET1545146Search in Google Scholar

[19] Dace E., Muizniece I., Blumberga A., Kaczala F. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions - Application of system dynamics modeling for the case of Latvia. Science of the Total Environment 2015:527–528:80–90. doi:10.1016/j.scitotenv.2015.04.088Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other