Open Access

Thermogravimetric and Kinetic Analysis of Melon (Citrullus colocynthis L.) Seed Husk Using the Distributed Activation Energy Model


Cite

[1] Sanderson K. Lignocellulose: A chewy problem. Nature 2011:474:S12-S14. doi:10.1038/474S012a10.1038/474S012a21697834Search in Google Scholar

[2] Straathof A. J. Transformation of biomass into commodity chemicals using enzymes or cells. Chemical Reviews 2014:114(3):1871-908. doi:10.1021/cr400309c10.1021/cr400309c23987659Search in Google Scholar

[3] FAO, Melon Seed Statistics: Nigeria. FAOSTAT Statistics 2008-2013. 2015.Search in Google Scholar

[4] Giwa S. O., Chuah L. A., Adam N. M. Fuel properties and rheological behavior of biodiesel from egusi (Colocynthis citrullus L.) seed kernel oil. Fuel Processing Technology 2014:122(0):42-48. doi:10.1016/j.fuproc.2014.01.01410.1016/j.fuproc.2014.01.014Search in Google Scholar

[5] Elsheikh Y. A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step. Industrial Crops and Products 2013:49(0):822-829. doi:10.1016/j.indcrop.2013.06.04110.1016/j.indcrop.2013.06.041Search in Google Scholar

[6] Nehdi I. A. et al. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chemistry 2013:136(2):348-353. doi:10.1016/j.foodchem.2012.09.00910.1016/j.foodchem.2012.09.00923122069Search in Google Scholar

[7] Jarret R. L., Levy I. J. Oil and Fatty Acid Contents in Seed of Citrullus lanatus Schrad. Journal of Agricultural and Food Chemistry 2012:60(20):5199-5204. doi:10.1021/jf300046f10.1021/jf300046f22540530Search in Google Scholar

[8] Hussain A. I. et al. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. Journal of Ethnopharmacology 2014:155(1):54-66. doi:10.1016/j.jep.2014.06.01110.1016/j.jep.2014.06.01124936768Search in Google Scholar

[9] Mehta A. et al. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. Journal of Ethnopharmacology 2013:149(1):195-200. doi:10.1016/j.jep.2013.06.02210.1016/j.jep.2013.06.02223816500Search in Google Scholar

[10] Foo K., Hameed B. Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation. Desalination and Water Treatment 2012:47(1-3):130-138. doi:10.1080/19443994.2012.69682610.1080/19443994.2012.696826Search in Google Scholar

[11] Achigan-Dako E. G. et al. Importance and practices of Egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv.‘Aklamkpa’) in sociolinguistic areas in Benin. Biotechnology Agronomy, Society and Environment 2008:12(4):393-403.Search in Google Scholar

[12] Ezeike G. O. I. Hygroscopic characteristics of unshelled egusi (melon) seeds. International Journal of Food Science and Technology 1988:23(5):511-519. doi:10.1111/j.1365-2621.1988.tb00608.x10.1111/j.1365-2621.1988.tb00608.xSearch in Google Scholar

[13] Vitali F. et al. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Management 2013:33(12):2762-2770. doi:10.1016/j.wasman.2013.08.02610.1016/j.wasman.2013.08.02624064375Search in Google Scholar

[14] Kirsanovs V., Zandeckis A. Investigation of Biomass Gasification Process with Torrefaction Using Equilibrium Model. Energy Procedia 2015:72:329-336. doi:10.1016/j.egypro.2015.06.04810.1016/j.egypro.2015.06.048Search in Google Scholar

[15] Nyakuma B. B. et al. Gasification of Empty Fruit Bunch Briquettes in a Fixed Bed Tubular Reactor for Hydrogen Production. Applied Mechanics and Materials 2014:699:534-539. doi:10.4028/www.scientific.net/AMM.699.53410.4028/www.scientific.net/AMM.699.534Search in Google Scholar

[16] Rusanova J. et al. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production. Environmental and Climate Technologies 2013:12(1):10-14. doi:10.2478/rtuect-2013-001010.2478/rtuect-2013-0010Search in Google Scholar

[17] Guerrero L. A., Maas G., Hogland W. Solid waste management challenges for cities in developing countries. Waste Management 2013:33(1):220-232. doi:10.1016/j.wasman.2012.09.00810.1016/j.wasman.2012.09.00823098815Search in Google Scholar

[18] Barisa A. et al. Application of Low-Carbon Technologies for Cutting Household GHG Emissions. Energy Procedia 2015:72:230-237. doi:10.1016/j.egypro.2015.06.03310.1016/j.egypro.2015.06.033Search in Google Scholar

[19] Nyakuma B. B. et al. Non-Isothermal Kinetic Analysis of Oil Palm Empty Fruit Bunch Pellets by Thermogravimetric Analysis. Chemical Engineering Transactions 2015:45:1327-1332. doi:10.3303/CET1545222Search in Google Scholar

[20] Li L. et al. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. Journal of Thermal Analysis and Calorimetry 2013:114(3):1183-1189. doi:10.1007/s10973-013-3115-210.1007/s10973-013-3115-2Search in Google Scholar

[21] Ceylan S., Topcu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource Technology 2014:156:182-8. doi:10.1016/j.biortech.2014.01.04010.1016/j.biortech.2014.01.04024508656Search in Google Scholar

[22] Cheng G. et al. Kinetic Study on Pyrolysis of Blooming-forming Cyanobacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(6):625-632. doi:10.1080/15567036.2011.59086610.1080/15567036.2011.590866Search in Google Scholar

[23] Nyakuma B. B. et al. Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes. Jurnal Teknologi 2014:67(3). doi:10.11113/jt.v67.276810.11113/jt.v67.2768Search in Google Scholar

[24] Shen D. K. et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology 2011:102(2):2047-2052. doi:10.1016/j.biortech.2010.09.08110.1016/j.biortech.2010.09.08120951030Search in Google Scholar

[25] Cai J., Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresource Technology 2008:99(8):2795-9. doi:10.1016/j.biortech.2007.06.03310.1016/j.biortech.2007.06.03317693085Search in Google Scholar

[26] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008:87(3):414-421. doi:10.1016/j.fuel.2007.05.004 10.1016/j.fuel.2007.05.004Search in Google Scholar

[27] Parikh J., Channiwala S., Ghosal G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005:84(5):487-494. doi:10.1016/j.fuel.2004.10.01010.1016/j.fuel.2004.10.010Search in Google Scholar

[28] Miura K. A New and Simple Method to Estimate f(E) and k0(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data. Energy & Fuels 1995:9(2):302-307. doi:10.1021/ef00050a01410.1021/ef00050a014Search in Google Scholar

[29] Vladimir V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proceedings of the Physical Society 1943:55(3):222. doi:10.1088/0959-5309/55/3/30810.1088/0959-5309/55/3/308Search in Google Scholar

[30] Miura K., Maki T. A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy & Fuels 1998:12(5):864-869. doi:10.1021/ef970212q10.1021/ef970212qSearch in Google Scholar

[31] Vassilev S. V. et al. An overview of the chemical composition of biomass. Fuel 2010:89(5):913-933. doi:10.1016/j.fuel.2009.10.02210.1016/j.fuel.2009.10.022Search in Google Scholar

[32] Natarajan E., Baskara Sethupathy S. Gasification of Groundnut Shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(9):980-986. doi:10.1080/15567036.2011.60179110.1080/15567036.2011.601791Search in Google Scholar

[33] Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry 2011:105(1):145-150. doi:10.1007/s10973-010-1267-x10.1007/s10973-010-1267-xSearch in Google Scholar

[34] Nyakuma B. B., Johari A., Ahmad A. Analysis of the pyrolytic fuel properties of empty fruit bunch briquettes. Journal of Applied Sciences 2012:12(24):2527-2533. doi:10.3923/jas.2012.2527.253310.3923/jas.2012.2527.2533Search in Google Scholar

[35] Nyakuma B. B. et al. Comparative analysis of the calorific fuel properties of Empty Fruit Bunch Fiber and Briquette. Energy Procedia 2014:52:466-473. doi:10.1016/j.egypro.2014.07.09910.1016/j.egypro.2014.07.099Search in Google Scholar

[36] Pattiya A. Thermochemical Characterization of Agricultural Wastes from Thai Cassava Plantations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2011:33(8):691-701. doi:10.1080/1556703090322892210.1080/15567030903228922Search in Google Scholar

[37] Lopez-Velazquez M. A. et al. Pyrolysis of orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis 2013:99:170-177. doi:10.1016/j.jaap.2012.09.01610.1016/j.jaap.2012.09.016Search in Google Scholar

[38] Yang H. et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007:86(12-13):1781-1788. doi:10.1016/j.fuel.2006.12.01310.1016/j.fuel.2006.12.013Search in Google Scholar

[39] McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002:83(1): 37-46. doi:10.1016/S0960-8524(01)00118-310.1016/S0960-8524(01)00118-3Search in Google Scholar

[40] Islam M. A., Asif M., Hameed B. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology 2015:179:227-233. doi:10.1016/j.biortech.2014.11.11510.1016/j.biortech.2014.11.11525545092Search in Google Scholar

[41] Damartzis T. et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology 2011:102(10):6230-8. doi:10.1016/j.biortech.2011.02.06010.1016/j.biortech.2011.02.06021398116Search in Google Scholar

[42] Slopiecka K., Bartocci P., Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 2012:97:491-497. doi:10.1016/j.apenergy.2011.12.05610.1016/j.apenergy.2011.12.056Search in Google Scholar

[43] Idris S. S. et al. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology 2010:101(12):4584-4592. doi:10.1016/j.biortech.2010.01.05910.1016/j.biortech.2010.01.05920153633Search in Google Scholar

[44] Chutia R. S., Kataki R., Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology 2013:139(0):66-72. doi:10.1016/j.biortech.2013.03.19110.1016/j.biortech.2013.03.19123644072Search in Google Scholar

[45] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.020 10.1016/j.wasman.2009.03.02019398318Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other