Cite

1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013; 49(6):1374-403. DOI: 10.1016/j.ejca.2012.12.02710.1016/j.ejca.2012.12.02723485231Open DOISearch in Google Scholar

2. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990; 250(4988):1684-9. DOI: 10.1126/science.227048210.1126/.2270482Open DOISearch in Google Scholar

3. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994; 265(5181):2088-90. DOI: 10.1126/science.809123110.1126/.8091231Open DOISearch in Google Scholar

4. Kurian AW, Kingham KE, Ford JM. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr Opin Obstet Gynecol. 2015; 27(1):23-33. DOI: 10.1097/GCO.000000000000014110.1097/GCO.000000000000014125502425Open DOISearch in Google Scholar

5. Hilbers FS, Vreeswijk MP, van Asperen CJ, Devilee P. The impact of next generation sequencing on the analysis of breast cancer susceptibility: a role for extremely rare genetic variation? Clin Genet. 2013; 84(5):407-14. DOI: 10.1111/cge.1225610.1111/cge.1225624025038Open DOISearch in Google Scholar

6. Sharma P, Klemp JR, Kimler BF, Mahnken JD, Geier LJ, Khan QJ, et al. Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing. Breast Cancer Res Treat. 2014; 145(3):707-14. DOI: 10.1007/s10549-014-2980-010.1007/s10549-014-2980-0417184724807107Open DOISearch in Google Scholar

7. Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013; 105(11):812-22. DOI: 10.1093/jnci/djt09510.1093/jnci/djt09523628597Open DOISearch in Google Scholar

8. Zaky SS, Lund M, May KA, Godette KD, Beitler JJ, Holmes LR, et al. The negative effect of triple-negative breast cancer on outcome after breast-conserving therapy. Ann Surg Oncol. 2011; 18(10):2858-65. DOI: 10.1245/s10434-011-1669-410.1245/s10434-011-1669-421442346Search in Google Scholar

9. Domagala P, Jakubowska A, Jaworska-Bieniek K, Kaczmarek K, Durda K, Kurlapska A, et al. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers. PLoS One. 2015; 10(6):e0130393. DOI: 10.1371/journal.pone.013039310.1371/journal.pone.0130393447115526083025Search in Google Scholar

10. Morris JL, Gordon OK. Positive results : making the best decisions when you’re at high risk for breast or ovarian cancer. Amherst, N.Y.: Prometheus Books; 2010. 395 p. p.Search in Google Scholar

11. Daly MB, Pilarski R, Axilbund JE, Berry M, Buys SS, Crawford B, et al. Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2015. J Natl Compr Canc Netw. 2016; 14(2):153-62. DOI: 10.6004/jnccn.2016.001810.6004/jnccn.2016.001826850485Open DOISearch in Google Scholar

12. Chennagiri N, White EJ, Frieden A, Lopez E, Lieber DS, Nikiforov A, et al. Orthogonal NGS for High Throughput Clinical Diagnostics. Sci Rep. 2016; 6:24650. DOI: 10.1038/srep2465010.1038/srep24650483629927090146Open DOISearch in Google Scholar

13. Unger MA, Nathanson KL, Calzone K, Antin-Ozerkis D, Shih HA, Martin AM, et al. Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing. Am J Hum Genet. 2000; 67(4):841-50. DOI: 10.1086/30307610.1086/303076128788910978226Open DOISearch in Google Scholar

14. Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015; 13(4):e1002128. DOI: 10.1371/journal.pbio.100212810.1371/journal.pbio.1002128440656525901488Search in Google Scholar

15. Kwong A, Chen JW, Shin VY. A new paradigm of genetic testing for hereditary breast/ovarian cancers. Hong Kong Med J. 2016; 22(2):171-7.10.12809/hkmj15463426980575Search in Google Scholar

16. Weischer M, Bojesen SE, Tybjaerg-Hansen A, Axelsson CK, Nordestgaard BG. Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007; 25(1):57-63. DOI: 10.1200/JCO.2005.05.516010.1200/JCO.2005.05.516016880452Open DOISearch in Google Scholar

17. Domagala P, Huzarski T, Lubinski J, Gugala K, Domagala W. Immunophenotypic predictive profiling of BRCA1-associated breast cancer. Virchows Arch. 2011; 458(1):55-64. DOI: 10.1007/s00428-010-0988-310.1007/s00428-010-0988-3301619620941507Open DOISearch in Google Scholar

18. Negura L, Uhrhammer N, Negura A, Artenie V, Carasevici E, Bignon YJ. Complete BRCA mutation screening in breast and ovarian cancer predisposition families from a North-Eastern Romanian population. Fam Cancer. 2010; 9(4):519-23. DOI: 10.1007/s10689-010-9361-610.1007/s10689-010-9361-620567915Open DOISearch in Google Scholar

19. Burcos T, Cimponeriu D, Ion DA, Spandole S, Apostol P, Toma M, et al. Analysis of several BRCA1 and BRCA2 mutations in a hospital-based series of unselected breast cancer cases. Chirurgia (Bucur). 2013;108(4):468-72.Search in Google Scholar

20. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011; 108(44):18032-7. DOI: 10.1073/pnas.111505210810.1073/pnas.1115052108320765822006311Open DOISearch in Google Scholar

21. Machackova E, Foretova L, Lukesova M, Vasickova P, Navratilova M, Coene I, et al. Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer. BMC Cancer. 2008; 8:140. DOI: 10.1186/1471-2407-8-14010.1186/1471-2407-8-140241325418489799Search in Google Scholar

22. Wojcik P, Jasiowka M, Strycharz E, Sobol M, Hodorowicz- Zaniewska D, Skotnicki P, et al. Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland. Hered Cancer Clin Pract. 2016; 14:5. DOI: 10.1186/s13053-016-0046-510.1186/s13053-016-0046-5473908426843898Open DOISearch in Google Scholar

23. Cybulski C, Huzarski T, Byrski T, Gronwald J, Debniak T, Jakubowska A, et al. Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet. 2009; 75(1):72-8. DOI: 10.1111/j.1399-0004.2008.01111.x10.1111/j.1399-0004.2008.01111.xSearch in Google Scholar

24. Liu C, Wang Y, Wang QS, Wang YJ. The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2012; 13(4):1355-60. DOI: 10.7314/APJCP.2012.13.4.135510.7314/APJCP.2012.13.4.1355Open DOISearch in Google Scholar

25. Huszno J, Budryk M, Kolosza Z, Tecza K, Pamula Pilat J, Nowara E, et al. A Comparison between CHEK2*1100delC/I157T Mutation Carrier and Noncarrier Breast Cancer Patients: A Clinicopathological Analysis. Oncology. 2016; 90(4):193-8. DOI: 10.1159/00044432610.1159/000444326Search in Google Scholar

26. Kriege M, Hollestelle A, Jager A, Huijts PE, Berns EM, Sieuwerts AM, et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. Br J Cancer. 2014; 111(5):1004-13. DOI: 10.1038/bjc.2014.30610.1038/bjc.2014.306Open DOISearch in Google Scholar

27. Cybulski C, Kluzniak W, Huzarski T, Wokolorczyk D, Kashyap A, Jakubowska A, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol. 2015; 16(6):638-44. DOI: 10.1016/S1470-2045(15)70142-710.1016/S1470-2045(15)70142-7Open DOISearch in Google Scholar

28. Heikkinen T, Karkkainen H, Aaltonen K, Milne RL, Heikkila P, Aittomaki K, et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res. 2009; 15(9):3214-22. DOI: 10.1158/1078-0432.CCR-08-312810.1158/1078-0432.CCR-08-312819383810Open DOISearch in Google Scholar

29. Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015; 33(4):304-11. DOI: 10.1200/JCO.2014.57.141410.1200/JCO.2014.57.1414430221225452441Open DOISearch in Google Scholar

30. Wilson JR, Bateman AC, Hanson H, An Q, Evans G, Rahman N, et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations.J Med Genet. 2010; 47(11):771-4. DOI: 10.1136/jmg.2010.07811310.1136/jmg.2010.07811320805372Open DOISearch in Google Scholar

31. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015; 33(21):2345-52. DOI: 10.1200/JCO.2014.59.572810.1200/JCO.2014.59.572826014290Open DOISearch in Google Scholar

32. Stagni V, Manni I, Oropallo V, Mottolese M, Di Benedetto A, Piaggio G, et al. ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun. 2015;6:6886. DOI: 10.1038/ncomms788610.1038/ncomms788625881002Open DOISearch in Google Scholar

33. Eccles DM, Li N, Handwerker R, Maishman T, Copson ER, Durcan LT, et al. Genetic testing in a cohort of young patients with HER2-amplified breast cancer. Ann Oncol. 2016; 27(3):467-73. DOI: 10.1093/annonc/mdv59210.1093/annonc/mdv59226681682Open DOISearch in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology