Cite

Ron E. Ionizing radiation and cancer risk: evidence from epidemiology. Pediatr Radiol 2002; 32: 232-7. 42-410.1007/s00247-002-0672-01195670110.1007/s00247-002-0672-0RonE.Ionizing radiation and cancer risk: evidence from epidemiologyPediatr Radiol200232232742-410.1007/s00247-002-0672-0Search in Google Scholar

Rowland JH, Kent EE, Forsythe LP, Loge JH, Hjorth L, Glaser A, et al. Cancer survivorship research in Europe and the United States: where have we been, where are we going, and what can we learn from each other? Cancer 2013; 119(Suppl 11): 2094-10810. 1002/cncr.2806010.1002/cncr.2806023695922RowlandJHKentEEForsytheLPLogeJHHjorthLGlaserACancer survivorship research in Europe and the United States: where have we been, where are we going, and what can we learn from each other?Cancer2013119112094108101002/cncr.28060Open DOISearch in Google Scholar

Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res 2013; 752: 84-98. 10.1016/j.mrrev.2012.12.00123262375KadhimMSalomaaSWrightEHildebrandtGBelyakovOVPriseKMNon-targeted effects of ionising radiation–implications for low dose riskMutat Res2013752849810.1016/j.mrrev.2012.12.001Open DOISearch in Google Scholar

United Nations Scientific Committee on the Effects of Atomic Radiation. Radiation UNSCotEoA. Sources and effects of ionizing radiation, Annex A. UNSCEAR 2008 report; 2008United Nations Scientific Committee on the Effects of Atomic RadiationRadiation UNSCotEoASources and effects of ionizing radiation, Annex A. UNSCEAR2008report; 2008Search in Google Scholar

Veronesi U, Luini A, Del Vecchio M, Greco M, Galimberti V, Merson M, et al. Radiotherapy after breast-preserving surgery in women with localized cancer of the breast. N Engl J Med 1993; 328: 1587-91. 10.1056/NEJM199306033282202.8387637VeronesiULuiniADel VecchioMGrecoMGalimbertiVMersonMRadiotherapy after breast-preserving surgery in women with localized cancer of the breastN Engl J Med199332815879110.1056/NEJM199306033282202Open DOISearch in Google Scholar

Radiation UNSCoteoA. Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure due to the nuclear accident following the great East-Japan earthquake and tsunami. 2016Radiation UNSCoteoADevelopments since the 2013 UNSCEAR report on the levels and effects of radiation exposure due to the nuclear accident following the great East-Japan earthquake and tsunami2016Search in Google Scholar

Ciocca M, Pedroli G, Orecchia R, Guido A, Cattani F, Cambria R, et al. Radiation survey around a Liac mobile electron linear accelerator for intraoperative radiation therapy. J Appl Clin Med Phys 2009; 10: 2950.19458597CioccaMPedroliGOrecchiaRGuidoACattaniFCambriaRRadiation survey around a Liac mobile electron linear accelerator for intraoperative radiation therapyJ Appl Clin Med Phys200910295010.1120/jacmp.v10i2.2950Search in Google Scholar

Veronesi U, Gatti G, Luini A, Intra M, Orecchia R, Borgen P, et al. Intraoperative radiation therapy for breast cancer: technical notes. BreastJ 2003; 9: 106-12.1260338310.1046/j.1524-4741.2003.09208.xVeronesiUGattiGLuiniAIntraMOrecchiaRBorgenPIntraoperative radiation therapy for breast cancer: technical notesBreast J2003910612Search in Google Scholar

Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 1988; 35: 95-125.306582610.1016/S0079-6603(08)60611-XWardJF.DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparabilityProg Nucleic Acid Res Mol Biol19883595125Search in Google Scholar

Dianov GL, O’Neill P, Goodhead DT. Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 2001; 23: 745-9. 10.1002/bies.110411494323DianovGLO’NeillPGoodheadDT.Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNABioessays200123745910.1002/bies.110411494323Open DOISearch in Google Scholar

Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rube CE. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol 2016; 121: 154-61. 10.1016/j.radonc.2016.08.02827637859LoratYTimmSJakobBTaucher-ScholzGRubeCE.Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiationRadiother Oncol20161211546110.1016/j.radonc.2016.08.02827637859Open DOISearch in Google Scholar

Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17: 5497-508. 10.1093/emboj/17.18.54979736627TakataMSasakiMSSonodaEMorrisonCHashimotoMUtsumiHHomologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cellsEMBO J199817549750810.1093/emboj/17.18.549711708759736627Open DOISearch in Google Scholar

Ojima M, Ito M, Suzuki K, Kai M. Unstable chromosome aberrations do not accumulate in normal human fibroblast after fractionated x-irradiation. PLoS One 2015; 10: e0116645. 10.1371/journal.pone.011664525723489OjimaMItoMSuzukiKKaiM.Unstable chromosome aberrations do not accumulate in normal human fibroblast after fractionated x-irradiationPLoS One201510e011664510.1371/journal.pone.0116645Open DOISearch in Google Scholar

Hei TK. Response of biological systems to low doses of ionizing radiation. Health Phys 2016; 110: 281. 10.1097/HP.000000000000045226808883HeiTK.Response of biological systems to low doses of ionizing radiationHealth Phys201611028110.1097/HP.0000000000000452Open DOISearch in Google Scholar

Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 2013; 25: 578-85. 10.1016/j.clon.2013.06.007LomaxMEFolkesLKO’NeillP.Biological consequences of radiation-induced DNA damage: relevance to radiotherapyClin Oncol2013255788510.1016/j.clon.2013.06.007Open DOISearch in Google Scholar

Jeggo PA. DNA breakage and repair. Adv Genet 1998; 38: 185-218.9677708JeggoPA.DNA breakage and repairAdv Genet19983818521810.1016/S0065-2660(08)60144-3Search in Google Scholar

Short SC, Bourne S, Martindale C, Woodcock M, Jackson SP. DNA damage responses at low radiation doses. Radiat Res 2005; 164: 292-302.10.1667/RR3421.116137202ShortSCBourneSMartindaleCWoodcockMJacksonSP.DNA damage responses at low radiation dosesRadiat Res2005164292302Open DOISearch in Google Scholar

Moore S, Stanley FK, Goodarzi AA. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task. DNA Repair 2014; 17: 64-73. 10.1016/j.dnarep.2014.01.01424565812MooreSStanleyFKGoodarziAA.The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation–no simple taskDNA Repair201417647310.1016/j.dnarep.2014.01.01424565812Open DOISearch in Google Scholar

Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36: 5678-94. 10.1093/nar/gkn55018772227KinnerAWuWStaudtCIliakisG.Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatinNucleic Acids Res20083656789410.1093/nar/gkn550255357218772227Open DOISearch in Google Scholar

Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 2006; 5: 534-43. 10.1016/j.dnarep.2006.01.01216531125StuckiMJacksonSP.gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomesDNA Repair200655344310.1016/j.dnarep.2006.01.01216531125Open DOISearch in Google Scholar

Tommasino F, Friedrich T, Jakob B, Meyer B, Durante M, Scholz M. Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: A combined experimental and modelling study. PLoS One 2015; 10: e0129416. 10.1371/journal.pone.012941626067661TommasinoFFriedrichTJakobBMeyerBDuranteMScholzM.Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: A combined experimental and modelling studyPLoS One201510e012941610.1371/journal.pone.0129416446590026067661Open DOISearch in Google Scholar

Kegel P, Riballo E, Kuhne M, Jeggo PA, Lobrich M. X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair 2007; 6: 1692-7. 10.1016/j.dnarep.2007.05.013KegelPRiballoEKuhneMJeggoPALobrichM.X-irradiation of cells on glass slides has a dose doubling impactDNA Repair200761692710.1016/j.dnarep.2007.05.01317644493Open DOISearch in Google Scholar

Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 2003; 100: 5057-62. 10.1073/pnas.083091810012679524RothkammKLobrichM.Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray dosesProc Natl Acad Sci U S A200310050576210.1073/pnas.083091810015429712679524Open DOISearch in Google Scholar

Osipov AN, Pustovalova M, Grekhova A, Eremin P, Vorobyova N, Pulin A, et al. Low doses of X-rays induce prolonged and ATM-independent persistence of gammaH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2015; 6: 27275-87. 10.18632/oncotarget.473926314960OsipovANPustovalovaMGrekhovaAEreminPVorobyovaNPulinALow doses of X-rays induce prolonged and ATM-independent persistence of gammaH2AX foci in human gingival mesenchymal stem cellsOncotarget20156272758710.18632/oncotarget.4739469498926314960Open DOISearch in Google Scholar

Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, et al. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res 2011; 52: 380-6.2143660610.1269/jrr.10121LiangXSoYHCuiJMaKXuXZhaoYThe low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cellsJ Radiat Res201152380621436606Search in Google Scholar

Brenner DJ, Hall EJ. Computed tomography - an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277-84. 10.1056/NEJMra07214918046031BrennerDJHallEJ.Computed tomography - an increasing source of radiation exposureN Engl J Med200735722778410.1056/NEJMra07214918046031Open DOISearch in Google Scholar

Xue L, Yu D, Furusawa Y, Cao J, Okayasu R, Fan S. ATM-dependent hyper-radiosensitivity in mammalian cells irradiated by heavy ions. Int J Radiat Oncol Biol Phys 2009; 75: 235-43. 10.1016/j.ijrobp.2009.04.08819695441XueLYuDFurusawaYCaoJOkayasuRFanS.ATM-dependent hyper-radiosensitivity in mammalian cells irradiated by heavy ionsInt J Radiat Oncol Biol Phys2009752354310.1016/j.ijrobp.2009.04.08819695441Open DOISearch in Google Scholar

Slonina D, Gasinska A, Biesaga B, Janecka A, Kabat D. An association between low-dose hyper-radiosensitivity and the early G2-phase checkpoint in normal fibroblasts of cancer patients. DNA Repair 2016; 39: 41-5. 10.1016/j.dnarep.2015.12.00126725161SloninaDGasinskaABiesagaBJaneckaAKabatD.An association between low-dose hyper-radiosensitivity and the early G2-phase checkpoint in normal fibroblasts of cancer patientsDNA Repair20163941510.1016/j.dnarep.2015.12.00126725161Open DOISearch in Google Scholar

Marples B, Collis SJ. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 2008; 70: 1310-8. 10.1016/j.ijrobp.2007.11.07118374221MarplesBCollisSJ.Low-dose hyper-radiosensitivity: past, present, and futureInt J Radiat Oncol Biol Phys2008701310810.1016/j.ijrobp.2007.11.07118374221Open DOISearch in Google Scholar

Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133: 41-51.843411210.2307/3578255MarplesBJoinerMC.The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell populationRadiat Res19931334151Search in Google Scholar

Short SC, Woodcock M, Marples B, Joiner MC. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol 2003; 79: 99-105.10.1080/095530002100004564612569013ShortSCWoodcockMMarplesBJoinerMC.Effects of cell cycle phase on low-dose hyper-radiosensitivityInt J Radiat Biol20037999105Open DOISearch in Google Scholar

Krueger SA, Wilson GD, Piasentin E, Joiner MC, Marples B. The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys 2010; 77: 1509-17. 10.1016/j.ijrobp.2010.01.02820637979KruegerSAWilsonGDPiasentinEJoinerMCMarplesB.The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivityInt J Radiat Oncol Biol Phys20107715091710.1016/j.ijrobp.2010.01.028381890620637979Open DOISearch in Google Scholar

Schoenherr D, Krueger SA, Martin L, Marignol L, Wilson GD, Marples B. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell lines. Int J Radiat Biol 2013; 89: 1009-16. 10.3109/09553002.2013.82506123859266SchoenherrDKruegerSAMartinLMarignolLWilsonGDMarplesB.Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell linesInt J Radiat Biol20138910091610.3109/09553002.2013.82506123859266Open DOISearch in Google Scholar

Sinclair WK. Cyclic X-ray responses in mammalian cells in vitro. Radiat Res 2012; 178: AV112-24.10.1667/RRAV09.122870963SinclairWK.Cyclic X-ray responses in mammalian cells in vitroRadiat Res2012178AV11224Open DOISearch in Google Scholar

Xu B, Kim ST, Lim DS, Kastan MB. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002; 22: 1049-59.10.1128/MCB.22.4.1049-1059.2002XuBKimSTLimDSKastanMB.Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiationMol Cell Biol20022210495913463811809797Open DOISearch in Google Scholar

Marples B, Wouters BG, Joiner MC. An association between the radiation-induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism? Radiat Res 2003; 160: 38-45.1281652110.1667/RR3013MarplesBWoutersBGJoinerMC.An association between the radiation-induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism?Radiat Res2003160384512816521Search in Google Scholar

Pandita TK, Lieberman HB, Lim DS, Dhar S, Zheng W, Taya Y, et al. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 2000; 19: 1386-91. 10.1038/sj.onc.120344410723129PanditaTKLiebermanHBLimDSDharSZhengWTayaYIonizing radiation activates the ATM kinase throughout the cell cycleOncogene20001913869110.1038/sj.onc.120344410723129Open DOISearch in Google Scholar

Lobrich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 2007; 7: 861-9. 10.1038/nrc224817943134LobrichMJeggoPA.The impact of a negligent G2/M checkpoint on genomic instability and cancer inductionNat Rev Cancer20077861910.1038/nrc224817943134Open DOISearch in Google Scholar

Deckbar D, Jeggo PA, Lobrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 2011; 46: 271-83. 10.3109/10409238.2011.57576421524151DeckbarDJeggoPALobrichM.Understanding the limitations of radiation-induced cell cycle checkpointsCrit Rev Biochem Mol Biol2011462718310.3109/10409238.2011.575764317170621524151Open DOISearch in Google Scholar

Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, et al. Chromosome breakage after G2 checkpoint release. J Cell Biol 2007; 176: 749-55. 10.1083/jcb.20061204717353355DeckbarDBirrauxJKremplerATchouandongLBeucherAWalkerSChromosome breakage after G2 checkpoint releaseJ Cell Biol20071767495510.1083/jcb.200612047206404817353355Open DOISearch in Google Scholar

Fernet M, Megnin-Chanet F, Hall J, Favaudon V. Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radiosensitivity. DNA Repair 2010; 9: 48-57. 10.1016/j.dnarep.2009.10.00619926348FernetMMegnin-ChanetFHallJFavaudonV.Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radiosensitivityDNA Repair20109485710.1016/j.dnarep.2009.10.00619926348Open DOISearch in Google Scholar

Scott D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlenther Onkol 2000; 176: 229-34.10.1007/s00066005000510847120ScottD.Chromosomal radiosensitivity, cancer predisposition and response to radiotherapyStrahlenther Onkol20001762293410847120Open DOISearch in Google Scholar

Terzoudi GI, Manola KN, Pantelias GE, Iliakis G. Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 2005; 65: 11292-6. 10.1158/0008-5472.CAN-05-214816357135TerzoudiGIManolaKNPanteliasGEIliakisG.Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cellsCancer Res20056511292610.1158/0008-5472.CAN-05-214816357135Open DOISearch in Google Scholar

Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 1996; 146: 247-58.10.2307/35794548752302MorganWFDayJPKaplanMIMcGheeEMLimoliCL.Genomic instability induced by ionizing radiationRadiat Res199614624758Open DOISearch in Google Scholar

Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene 2003; 22: 6978-87. 10.1038/sj.onc.120698814557801LittleJB.Genomic instability and bystander effects: a historical perspectiveOncogene20032269788710.1038/sj.onc.120698814557801Open DOISearch in Google Scholar

Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat Res 2004; 568: 21-32. 10.1016/j.mrfmmm.2004.06.04315530536KadhimMAMooreSRGoodwinEH.Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive responseMutat Res2004568213210.1016/j.mrfmmm.2004.06.04315530536Open DOISearch in Google Scholar

Weissenborn U, Streffer C. Analysis of structural and numerical chromosomal anomalies at the first, second, and third mitosis after irradiation of one-cell mouse embryos with X-rays or neutrons. Int J Radiat Biol 1988; 54: 381-94.290086010.1080/09553008814551771WeissenbornUStrefferC.Analysis of structural and numerical chromosomal anomalies at the first, second, and third mitosis after irradiation of one-cell mouse embryos with X-rays or neutronsInt J Radiat Biol198854381942900860Search in Google Scholar

Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol 2003; 79: 15-25.10.1080/095530002100004566412556327LorimoreSAWrightEG.Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A reviewInt J Radiat Biol2003791525Open DOISearch in Google Scholar

Smith LE, Nagar S, Kim GJ, Morgan WF. Radiation-induced genomic instability: radiation quality and dose response. Health Phys 2003; 85: 23-9.1285246710.1097/00004032-200307000-00006SmithLENagarSKimGJMorganWF.Radiation-induced genomic instability: radiation quality and dose responseHealth Phys20038523912852467Search in Google Scholar

Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 1992; 355: 738-40. 10.1038/355738a01741061KadhimMAMacdonaldDAGoodheadDTLorimoreSAMarsdenSJWrightEG.Transmission of chromosomal instability after plutonium alpha-particle irradiationNature19923557384010.1038/355738a01741061Open DOISearch in Google Scholar

Lloyd DC, Edwards AA, Leonard A, Deknudt GL, Verschaeve L, Natarajan AT, et al. Chromosomal aberrations in human lymphocytes induced in vitro by very low doses of X-rays. Int J Radiat Biol 1992; 61: 335-43.10.1080/095530092145510211347066LloydDCEdwardsAALeonardADeknudtGLVerschaeveLNatarajanATChromosomal aberrations in human lymphocytes induced in vitro by very low doses of X-raysInt J Radiat Biol199261335431347066Open DOISearch in Google Scholar

Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissiere A, Gupta R, et al. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res 2008; 68: 8304-11. 10.1158/0008-5472.CAN-08-121218922902MaxwellCAFleischMCCostesSVEricksonACBoissiereAGuptaRTargeted and nontargeted effects of ionizing radiation that impact genomic instabilityCancer Res20086883041110.1158/0008-5472.CAN-08-121218922902Open DOISearch in Google Scholar

Portess DI, Bauer G, Hill MA, O’Neill P. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res 2007; 67: 1246-53. 10.1158/0008-5472.CAN-06-298517283161PortessDIBauerGHillMAO’NeillP.Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosisCancer Res20076712465310.1158/0008-5472.CAN-06-298517283161Open DOISearch in Google Scholar

Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 2007; 67: 8662-70. 10.1158/0008-5472.CAN-07-129417875706AndarawewaKLEricksonACChouWSCostesSVGascardPMottJDIonizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transitionCancer Res20076786627010.1158/0008-5472.CAN-07-129417875706Open DOISearch in Google Scholar

Bauchinger M, Schmid E, Dresp J. Calculation of the dose-rate dependence of the decentric yield after Co gamma-irradiation of human lymphocytes. Int J Radiat Biol Relat Stud Phys Chem Med 1979; 35: 229-33.10.1080/09553007914550261313377BauchingerMSchmidEDrespJ.Calculation of the dose-rate dependence of the decentric yield after Co gamma-irradiation of human lymphocytesInt J Radiat Biol Relat Stud Phys Chem Med19793522933313377Open DOISearch in Google Scholar

Iwasaki T, Takashima Y, Suzuki T, Yoshida MA, Hayata I. The dose response of chromosome aberrations in human lymphocytes induced in vitro by very low-dose gamma rays. Radiat Res 2011; 175: 208-13.10.1667/RR2097.121268714IwasakiTTakashimaYSuzukiTYoshidaMAHayataI.The dose response of chromosome aberrations in human lymphocytes induced in vitro by very low-dose gamma raysRadiat Res201117520813Open DOISearch in Google Scholar

Bakhoum SF, Swanton C. Chromosomal instability, aneuploidy, and cancer. Front Oncol 2014; 4: 161. 10.3389/fonc.2014.0016124995162BakhoumSFSwantonC.Chromosomal instability, aneuploidy, and cancerFront Oncol2014416110.3389/fonc.2014.00161406291124995162Open DOISearch in Google Scholar

Cho YH, Kim SY, Woo HD, Kim YJ, Ha SW, Chung HW. Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation. Int J Environ Res Public Health 2015; 12: 15162-72. 10.3390/ijer-ph12121497926633443ChoYHKimSYWooHDKimYJHaSWChungHW.Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiationInt J Environ Res Public Health201512151627210.3390/ijer-ph121214979Open DOISearch in Google Scholar

Lucas JN, Tenjin T, Straume T, Pinkel D, Moore D, 2nd, Litt M, et al. Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int J Radiat Biol 1989;56: 35-44.10.1080/095530089145511612569008LucasJNTenjinTStraumeTPinkelDMooreD2ndLittMRapid human chromosome aberration analysis using fluorescence in situ hybridizationInt J Radiat Biol19895635442569008Open DOISearch in Google Scholar

Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Res 2003; 63: 1464-9.12670891DahleJKvamE.Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiationCancer Res20036314649Search in Google Scholar

Cresti N, Lee J, Rourke E, Televantou D, Jamieson D, Verrill M, et al. Genetic variants in the HER2 gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancer. Eur J Cancer 2016; 55: 27-37. 10.1016/j.ejca.2015.10.06626773371CrestiNLeeJRourkeETelevantouDJamiesonDVerrillMGenetic variants in the HER2 gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancerEur J Cancer201655273710.1016/j.ejca.2015.10.06626773371Open DOISearch in Google Scholar

Umebayashi Y, Honma M, Suzuki M, Suzuki H, Shimazu T, Ishioka N, et al. Mutation induction in cultured human cells after low-dose and low-doserate gamma-ray irradiation: detection by LOH analysis. J Radiat Res 2007; 48: 7-11.10.1269/jrr.06054UmebayashiYHonmaMSuzukiMSuzukiHShimazuTIshiokaNMutation induction in cultured human cells after low-dose and low-doserate gamma-ray irradiation: detection by LOH analysisJ Radiat Res20074871117132913Open DOISearch in Google Scholar

Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 2003; 104: 347-55.10.1093/oxfordjournals.rpd.a00619814579891PriseKMFolkardMMichaelBD.A review of the bystander effect and its implications for low-dose exposureRadiat Prot Dosimetry20031043475514579891Open DOISearch in Google Scholar

Sowa Resat MB, Morgan WF. Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cells. J Cell Biochem 2004; 92: 1013-9. 10.1002/jcb.2014915258922Sowa ResatMBMorganWF.Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cellsJ Cell Biochem2004921013910.1002/jcb.20149Open DOISearch in Google Scholar

Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 2003; 22: 7050-7. 10.1038/sj.onc.120696114557810AzzamEIde ToledoSMLittleJB.Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effectOncogene2003227050710.1038/sj.onc.1206961Open DOISearch in Google Scholar

Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 1992; 52: 6394-6.1423287NagasawaHLittleJB.Induction of sister chromatid exchanges by extremely low doses of alpha-particlesCancer Res19925263946Search in Google Scholar

Ojima M, Ban N, Kai M. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res 2008; 170: 365-71. 10.1667/RR1255.118763860OjimaMBanNKaiM.DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effectsRadiat Res20081703657110.1667/RR1255.1Open DOISearch in Google Scholar

Huo L, Nagasawa H, Little JB. HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations. Radiat Res 2001; 156: 521-5.1160406510.1667/0033-7587(2001)156[0521:HMIIBC]2.0.CO;2HuoLNagasawaHLittleJB.HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutationsRadiat Res20011565215Search in Google Scholar

Narayanan PK, Goodwin EH, Lehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 1997; 57: 3963-71.9307280NarayananPKGoodwinEHLehnertBE.Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cellsCancer Res199757396371Search in Google Scholar

Oller AR, Thilly WG. Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt gene. J Mol Biol 1992; 228: 813-26.1469715OllerARThillyWG.Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt geneJ Mol Biol19922288132610.1016/0022-2836(92)90866-ISearch in Google Scholar

Seymour CB, Mothersill C. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat Res 2000; 153: 508-11.1079027010.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2SeymourCBMothersillC.Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curveRadiat Res200015350811Search in Google Scholar

Watson GE, Lorimore SA, Macdonald DA, Wright EG. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res 2000; 60: 5608-11.11059747WatsonGELorimoreSAMacdonaldDAWrightEG.Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiationCancer Res200060560811Search in Google Scholar

Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A 2008; 105: 12445-50. 10.1073/pnas.080418610518711141MancusoMPasqualiELeonardiSTanoriMRebessiSDi MajoVOncogenic bystander radiation effects in Patched heterozygous mouse cerebellumProc Natl Acad Sci U S A2008105124455010.1073/pnas.0804186105Open DOISearch in Google Scholar

Chai Y, Hei TK. Radiation induced bystander effect in vivo. Acta Med Nagasaki 2008; 53: S65-S9.ChaiYHeiTK.Radiation induced bystander effect in vivoActa Med Nagasaki200853S65S9Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology