Cite

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, et al. Neuroscience (2nd edition) Sunderland (MA): Sinauer Associates; 2001.PurvesDAugustineGJFitzpatrickDKatzLCLaMantiaASMcNamaraJOet alNeuroscience (2nd edition)Sunderland (MA)Sinauer Associates2001Search in Google Scholar

Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 2010; 28: 3838-43.ParkJKHodgesTArkoLShenMDello IaconoDMcNabbAet alScale to predict survival after surgery for recurrent glioblastoma multiformeJ Clin Oncol20102838384310.1200/JCO.2010.30.0582Search in Google Scholar

Chaichana KL, McGirt MJ, Laterra J, Olivi A, Quiñones-Hinojosa A. Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. J Neurosurg 2010; 112: 10-7.ChaichanaKLMcGirtMJLaterraJOliviAQuiñones-HinojosaARecurrence and malignant degeneration after resection of adult hemispheric low-grade gliomasJ Neurosurg201011210710.3171/2008.10.JNS08608Search in Google Scholar

Wick W, Stupp R, Beule AC, Bromberg J, Wick A, Ernemann U, et al. A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol 2008; 10: 1019-24.WickWStuppRBeuleACBrombergJWickAErnemannUet alA novel tool to analyze MRI recurrence patterns in glioblastomaNeuro Oncol20081010192410.1215/15228517-2008-058Search in Google Scholar

Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009; 253:486-96.BarajasRFJrChangJSSegalMRParsaATMcDermottMWBergerMSet alDifferentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imagingRadiology20092534869610.1148/radiol.2532090007Search in Google Scholar

Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012; 198: 19-26.FatterpekarGMGalheigoDNarayanaAJohnsonGKnoppETreatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRIAJR Am J Roentgenol2012198192610.2214/AJR.11.7417Search in Google Scholar

Patronas NJ, Di Chiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, et al. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982; 144: 885-9.PatronasNJDi ChiroGBrooksRADeLaPazRLKornblithPLSmithBHet alWork in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brainRadiology1982144885910.1148/radiology.144.4.6981123Search in Google Scholar

Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988; 150: 189-97.Di ChiroGOldfieldEWrightDCDeMicheleDKatzDAPatronasNJet alCerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studiesAJR Am J Roentgenol19881501899710.2214/ajr.150.1.189Search in Google Scholar

Wong TZ, van der Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 2002; 12: 615-26.WongTZvan der WesthuizenGJColemanREPositron emission tomography imaging of brain tumorsNeuroimaging Clin N Am2002126152610.1016/S1052-5149(02)00033-3Search in Google Scholar

Olivero WC, Dulebohn SC, Lister JR. The use of PET in evaluating patients with primary brain tumors: Is it useful? J Neurol Neurosurg Psychiatry 1995; 58: 250-2.OliveroWCDulebohnSCListerJRThe use of PET in evaluating patients with primary brain tumors: Is it useful?J Neurol Neurosurg Psychiatry199558250210.1136/jnnp.58.2.250Search in Google Scholar

Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F. Overexpression of choline kinase is a frequent feature in human tumor derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 2000; 296: 580-3.Ramirez de MolinaARodriguez-GonzalezAGutierrezRMartinez-PineiroLSanchezJBonillaFOverexpression of choline kinase is a frequent feature in human tumor derived cell lines and in lung, prostate, and colorectal human cancersBiochem Biophys Res Commun2000296580310.1016/S0006-291X(02)00920-8Search in Google Scholar

Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K. Brain tumors: detection with C-11 choline PET. Radiology 1997; 202: 497–503.ShinouraNNishijimaMHaraTHaisaTYamamotoHFujiiKBrain tumors: detection with C-11 choline PETRadiology199720249750310.1148/radiology.202.2.9015080Search in Google Scholar

Sollini M, Sghedoni R, Erba PA, Cavuto S, Froio A, De Berti G, et al. Diagnostic performances of [18F]fluorocholine positron emission tomography in brain tumors. Q J Nucl Med Mol Imaging 2015; Sep 1 [Epub ahead of print]; PMID: 26329494.SolliniMSghedoniRErbaPACavutoSFroioADe BertiGet alDiagnostic performances of [18F]fluorocholine positron emission tomography in brain tumorsQ J Nucl Med Mol Imaging2015Sep 1 [Epub ahead of print]; PMID: 2632949410.23736/S1824-4785.17.02807-2Search in Google Scholar

Friedland RP, Mathis CA, Budinger TF. Labelled choline and phosphorycholine: Body distribution and brain autoradiography. J Nucl Med 1983; 24:812-5.FriedlandRPMathisCABudingerTFLabelled choline and phosphorycholine: Body distribution and brain autoradiographyJ Nucl Med1983248125Search in Google Scholar

Wyss MT, Weber B, Honer M, Späth N, Ametamey SM, Westera G, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 2004; 3: 312-6.WyssMTWeberBHonerMSpäthNAmetameySMWesteraGet al18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PETEur J Nucl Med Mol Imaging20043312610.1007/s00259-003-1337-4Search in Google Scholar

Oxender DL, Christensen HN. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 1963; 238: 3686-99.OxenderDLChristensenHNDistinct mediating systems for the transport of neutral amino acids by the Ehrlich cellJ Biol Chem196323836869910.1016/S0021-9258(19)75327-7Search in Google Scholar

Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, et al. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med 2002; 29: 648-54.KaimAHWeberBKurrerMOWesteraGSchweitzerAGottschalkJet al18F-FDG and 18F-FET uptake in experimental soft tissue infectionEur J Nucl Med2002296485410.1007/s00259-002-0780-y11976803Search in Google Scholar

Buck D, Förschler A, Lapa C, Schuster T, Vollmar P, Korn T, et al. 18F-FDG PET detects inflammatory infiltrates in spinal cord experimental autoimmune encephalomyelitis lesions. J Nucl Med 2012; 53: 1269-76.BuckDFörschlerALapaCSchusterTVollmarPKornTet al18F-FDG PET detects inflammatory infiltrates in spinal cord experimental autoimmune encephalomyelitis lesionsJ Nucl Med20125312697610.2967/jnumed.111.10260822738927Search in Google Scholar

Messing-Jünger AM, Floeth FW, Pauleit D, Reifenberger G, Willing R, Gärtner J, et al. Multimodal target point assessment for stereo-tactic biopsy in children with diffuse bithalamic astrocytomas. Child’s Nerv Syst 2002; 18:445-9.Messing-JüngerAMFloethFWPauleitDReifenbergerGWillingRGärtnerJet alMultimodal target point assessment for stereo-tactic biopsy in children with diffuse bithalamic astrocytomasChild’s Nerv Syst200218445910.1007/s00381-002-0644-612192504Search in Google Scholar

Pauleit D, Floeth F, Tellmann L, Hamacher K, Hautzel H, Müller HW, et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alphamethyl-L-tyrosine SPECT in brain tumors. J Nucl Med 2004; 45: 374-81.PauleitDFloethFTellmannLHamacherKHautzelHMüllerHWet alComparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alphamethyl-L-tyrosine SPECT in brain tumorsJ Nucl Med20044537481Search in Google Scholar

Pöpperl G, Goldbrunner R, Gildehaus FJ, Kreth FW, Tanner P, Holtmannspötter M, et al. O-(2-(18F)fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-25.PöpperlGGoldbrunnerRGildehausFJKrethFWTannerPHoltmannspötterMet alO-(2-(18F)fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastomaEur J Nucl Med Mol Imaging20053210182510.1007/s00259-005-1819-715877226Search in Google Scholar

Pöpperl G, Götz C, Rachinger W, Schnell O, Gildehaus FJ, Tonn JC, et al. Serial O-(2-[(18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800.PöpperlGGötzCRachingerWSchnellOGildehausFJTonnJCet alSerial O-(2-[(18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant gliomaEur J Nucl Med Mol Imaging20063379280010.1007/s00259-005-0053-7199888916550381Search in Google Scholar

Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 30: 176-84.PirothMDPinkawaMHolyRKlotzJNussenSStoffelsGet alPrognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiformeInt J Radiat Oncol Biol Phys2011301768410.1016/j.ijrobp.2010.01.05520646863Search in Google Scholar

Wyss M, Hofer S, Bruehlmeier M, Hefti M, Uhlmann C, Bärtschi E, et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J Neurooncol 2009; 95: 87-93.WyssMHoferSBruehlmeierMHeftiMUhlmannCBärtschiEet alEarly metabolic responses in temozolomide treated low-grade glioma patientsJ Neurooncol200995879310.1007/s11060-009-9896-219381442Search in Google Scholar

Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 2003; 98: 378-84.YaoKCKomataTKondoYKanzawaTKondoSGermanoIMMolecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagyJ Neurosurg2003983788410.3171/jns.2003.98.2.037812593626Search in Google Scholar

Stein GH. T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 1979; 99: 43-54.SteinGHT98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitroJ Cell Physiol197999435410.1002/jcp.1040990107222778Search in Google Scholar

Buroni FE, Pasi F, Persico MG, Lodola L, Aprile C, Nano R. Evidence of 18F-FCH uptake in human T98G glioblastoma cell line. Anticancer Res 2015; 35: 64438.BuroniFEPasiFPersicoMGLodolaLAprileCNanoREvidence of 18F-FCH uptake in human T98G glioblastoma cell lineAnticancer Res20153564438Search in Google Scholar

Wyss MT, Spaeth N, Biollaz G, Pahnke J, Alessi P, Trachsel E, Treyer V, et al. Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med 2007; 48:608-14.WyssMTSpaethNBiollazGPahnkeJAlessiPTrachselETreyerVet alUptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesisJ Nucl Med2007486081410.2967/jnumed.106.03625117401099Search in Google Scholar

Spaeth N, Wyss MT, Pahnke J, Biollaz G, Lutz A, Goepfert K, et al. Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L:-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging 2006; 33: 673-82.SpaethNWyssMTPahnkeJBiollazGLutzAGoepfertKet alUptake of 18F-fluorocholine, 18F-fluoro-ethyl-L:-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the ratEur J Nucl Med Mol Imaging2006336738210.1007/s00259-005-0045-716538503Search in Google Scholar

Bolcaen J, Descamps B, Deblaere K, Boterberg T, De Vos Pharm F, Kalala JP, et al. (18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: a PET study. Nucl Med Biol 2015; 42:38-45.BolcaenJDescampsBDeblaereKBoterbergTDe Vos PharmFKalalaJPet al(18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: a PET studyNucl Med Biol201542384510.1016/j.nucmedbio.2014.07.00625218024Search in Google Scholar

Wang L, Lieberman BP, Ploessl K, Kung HF. Synthesis and evaluation of 18F labelled FET prodrugs for tumor imaging. Nucl Med Biol 2014; 41: 58-67.WangLLiebermanBPPloesslKKungHFSynthesis and evaluation of 18F labelled FET prodrugs for tumor imagingNucl Med Biol201441586710.1016/j.nucmedbio.2013.09.011389594524183614Search in Google Scholar

Wang HE, Wu SY, Chang CW, Liu RS, Hwang LC, Lee TW, et al. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl Med Biol 2005; 32: 367-75.WangHEWuSYChangCWLiuRSHwangLCLeeTWet alEvaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal modelNucl Med Biol2005323677510.1016/j.nucmedbio.2005.01.00515878506Search in Google Scholar

Habermeier A, Graf J, Sandhöfer BF, Boissel JP, Roesch F, Closs EI. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids 2015; 47: 335-44.HabermeierAGrafJSandhöferBFBoisselJPRoeschFClossEISystem L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET)Amino Acids2015473354410.1007/s00726-014-1863-325385314Search in Google Scholar

Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40: 1367-73.HeissPMayerSHerzMWesterHJSchwaigerMSenekowitsch-SchmidtkeRInvestigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)-L-tyrosine in vitro and in vivoJ Nucl Med199940136773Search in Google Scholar

Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR. Biodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. Eur J Nucl Med Mol Imaging 2008; 35: 1192-203.BansalAShuyanWHaraTHarrisRADegradoTRBiodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher ratsEur J Nucl Med Mol Imaging200835119220310.1007/s00259-008-0736-y238698018264706Search in Google Scholar

Stöber B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: characterisation of [methyl3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 2006; 33: 932-9.StöberBTanaseUHerzMSeidlCSchwaigerMSenekowitsch-SchmidtkeRDifferentiation of tumour and inflammation: characterisation of [methyl3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cellsEur J Nucl Med Mol Imaging200633932910.1007/s00259-005-0047-516604346Search in Google Scholar

van Waarde A, Elsinga PH. Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des. 2008; 14: 3326-39.van WaardeAElsingaPHProliferation markers for the differential diagnosis of tumor and inflammationCurr Pharm Des20081433263910.2174/13816120878654939919075707Search in Google Scholar

Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-94.LangenKJHamacherKWeckesserMFloethFStoffelsGBauerDet alO-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applicationsNucl Med Biol2006332879410.1016/j.nucmedbio.2006.01.00216631076Search in Google Scholar

Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004; 45: 1931-8.SpaethNWyssMTWeberBScheideggerSLutzAVerweyJet alUptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrenceJ Nucl Med20044519318Search in Google Scholar

Piroth MD, Prasath J, Willuweit A, Stoffels G, Sellhaus B, van Osterhout A, et al. Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nucl Med Biol 2013; 40: 795-800.PirothMDPrasathJWilluweitAStoffelsGSellhausBvan OsterhoutAet alUptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomasNucl Med Biol20134079580010.1016/j.nucmedbio.2013.05.00123769262Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology