Open Access

The Deletion-Insertion model applied to the genome rearrangement problem


Cite

[1] A. Abramowicz and M. Gos, Neurofibromin in neurofibromatosis Ttpe 1-mutations in NF1 gene as cause of disease, Developmental Period Medicine, 18 (2014) 297–306.Search in Google Scholar

[2] E. Ars, E. Serra, J. Garcia, H. Kruyer, A. Gaona, C. Lazaro and X. Estivill, Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1, Human Molecular Genetics, 9 (2000) 237–247.10.1093/hmg/9.2.23710607834Search in Google Scholar

[3] V. Bafna and P. Pevzner, Sorting by transpositions, SIAM J. Discrete Math., 11 (1998) 224–240.10.1137/S089548019528280XSearch in Google Scholar

[4] L. Bulteau, G. Fertin and I Rusu, Sorting by transpositions is difficult, SIAM J. Discrete Math., 26 (2012) 1148–1180.10.1137/110851390Search in Google Scholar

[5] G. Cerbai and L. Ferrari, Permutation patterns in genome rearrangement problems, In: L. Ferrari, M. Vamvakari (Eds.), Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combinatorial Structures, Athens, Greece, June 18-20, 2018. CEUR Workshop Proceedings, 2113 (2018) 124–131.Search in Google Scholar

[6] J. Christy, J. McHugh, M. Riehl and N. Williams, Distribution of genome rearrangement distance under Double Cut and Join, Involve, 7 (2014) 491–507.10.2140/involve.2014.7.491Search in Google Scholar

[7] G. Fertin, A. Labarre, I. Rusu, É. Tannier and S. Vialette, Combinatorics of Genome Rearrangements, MIT Press, Cambridge, Massachusetts, 2009.10.7551/mitpress/9780262062824.001.0001Search in Google Scholar

[8] S. A. Guyer, L. S. Heath and J. P. C. Vergara, Subsequence and run heuristics for sorting by transpositions, Dept. Comput. Sci., Tech. Rep. TR 97-20 (1997), Virginia Polytechnic Inst. State Univ., Blacksburg, VA.Search in Google Scholar

[9] T. Hartman and R. Shamir, A simple and faster 1.5-approximation algorithm for sorting by transpositions, Inform. and Comput., 204 (2006) 275-290.10.1016/j.ic.2005.09.002Search in Google Scholar

[10] J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM, 20 (1977) 350–353.10.1145/359581.359603Search in Google Scholar

[11] K. Lindblad-Toh et al., Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 438 (2005) 803–819.10.1038/nature04338Search in Google Scholar

[12] National Human Genome Research Institute. NIH News Advisory, December 2002, http://www.genome.gov/page.cfm?pageID=10005831.Search in Google Scholar

[13] R. Rubin and D. Strayer, Rubin's Pathology: Clinicopathologic Foundation of Medicine (5 ed.), Wolters Kluwer Health: Lippincot Williams & Wilkins, Baltimore, Maryland, 2008, pp. 201–203.Search in Google Scholar

[14] S. Tonegawa, Somatic generation of antibody diversity, Nature, 302 (1983) 575–581.10.1038/302575a0Search in Google Scholar

[15] S. Yancopoulos, O. Attie and R. Friedberg, Efficient sorting of genomic permutations by translocation, inversion and block interchange, Bioinformatics, 21 (2005) 3340–3346.10.1093/bioinformatics/bti535Search in Google Scholar