Open Access

Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana


Cite

Agarwal, A., Singh, K. P., Jain, A. (2010). Medical significance and management of staphylococcal biofilm. FEMS (Federation of European Microbiological Societies) Immunol. Med. Microbiol. 58, 147-160.Search in Google Scholar

Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocompositesfor tissue engineering: A review. Polymer Degrad. Stability, 95 (11), 2126-2146.10.1016/j.polymdegradstab.2010.06.007Search in Google Scholar

Belcarz, A., Ginalska, G., Zalewska, J., Rzeski, W., Slósarczyk, A., Kowalczuk, D., Godlewski, P., Niedêwiadek, J. (2009). Covalent coating of hydroxyapatite by keratin stabilizes gentamicin release. J. Biomed. Mater. Res. B. Appl. Biomater., 89 (1), 102-113.10.1002/jbm.b.31192Search in Google Scholar

Busscher, H. J., van der Mei, H. C., Subbiahdoss, G., Jutte, P. C., van den Dungen, J. J. A. M., Zaat, S. A. J., Schultz, M. J., Grainger, D. W. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med., 4 (153), 153rv10.Search in Google Scholar

Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510-514.10.1016/j.bioeng.2007.08.001Search in Google Scholar

Christner, M., Franke, G. C., Schommer, N. N., Wendt, U., Wegert, K., Pehle, P., Kroll, G., Schulze, C., Buck, F., Mack, D., Aepfelbacher, M., Rohde, H. (2010). The giantextracellularmatrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol., 75, 187-207.10.1111/j.1365-2958.2009.06981.xSearch in Google Scholar

Costerton, J. W., Stewart, P. S., Greenberg, E. P. (1999). Bacterial biofilms: Acommon cause of persistent infections. Science, 284 (5418), 1318-1322.Search in Google Scholar

Cunha, B. A. (2001). Nosocomial pneumonia. Diagnostic and therapeutic considerations. Med. Clin. North Amer., 85 (1), 79-114.10.1016/S0025-7125(05)70305-9Search in Google Scholar

Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Inf., 5, (13), 1213-1219.10.1016/j.micinf.2003.08.00914623017Search in Google Scholar

Grainger, D. W., van der Mei, H. C., Jutte, P. C., van den Dungen, J. J., Schultz, M. J., van der Laan, B. F., Zaat, S. A., Busscher, H. J. (2013). Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 34 (37), 9237-9343.10.1016/j.biomaterials.2013.08.04324034505Search in Google Scholar

Guo, Y. J., Long, T., Chen, W., Ning, C., Zhu, Z. A., Guo, Y. P. (2013). Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater. Sci. Eng. C. Mater. Biol. Appl., 33 (7), 3583-3591.10.1016/j.msec.2013.04.02123910253Search in Google Scholar

Harmsen, M., Yang, L., Pamp, S. J., Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa bioflm formation, tolerance, and dispersal. FEMS Immunol Med. Microbiol., 59, 253-268.10.1111/j.1574-695X.2010.00690.x20497222Search in Google Scholar

Hetrick, E. M., Schoenfisch, M. H. (2006). Reducing implant-related infections: Active release strategies. Chem. Soc. Rev., 35 (9), 780-789.10.1039/b515219b16936926Search in Google Scholar

Hodgson, S. D., Greco-Stewart, V., Jimenez, C. S., Sifri, C. D., Brassinga, A. K. C., Ramirez-Arcos, S. (2014). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion, 54 (2), 461-470.Search in Google Scholar

Hoiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O., Kharazmi, A. (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Inf., 3 (1), 23-35.10.1016/S1286-4579(00)01349-6Search in Google Scholar

Jaiswal, S., Bhattacharya, K., McHale, P., Duffy, B. (2015). Dual effects of _-cyclodextrin-stabilised silver nanoparticles: Enhanced biofilm inhibition and reduced cytotoxicity. J. Mater. Sci. Mater. Med., 26 (1), 536710.1007/s10856-014-5367-125596861Search in Google Scholar

Jr. Pruitt, B. A., McManus, A. T., Kim, S. H., Goodwin, C. W. (1998). Burn wound infections: Current status. World J. Surg., 22, 135-145.10.1007/s0026899003619451928Search in Google Scholar

Kiedrowski, R. M., Horswill, A. R. (2011). New approaches for treating staphylococcal biofilm infections. Ann. NY Acad. Sci., 1241, 104-121.10.1111/j.1749-6632.2011.06281.x22191529Search in Google Scholar

Lepretre, S., Chai, F., Hornez, J. C., Vermet, G., Neut, C., Descamps, M., Hildebrand, H. F., Martel, B. (2009). Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials, 30, 6086-609310.1016/j.biomaterials.2009.07.04519674778Search in Google Scholar

Li, Z., Kong, W., Li, X., Xu, C., He, Y., Gao, J., Ma, Z., Wang, X., Zhang, Y., Xing, F., Li, M., Liu, Y.. Antibiotic-containing biodegradable bead clusters with porous PLGA coating as controllable drug-releasing bone fillers. J. Biomater. Sci. Polym. Ed., 22 (13), 1713-173110.1163/092050610X52160320836923Search in Google Scholar

Locs, J., Zalite, V., Berzina-Cimdina, L., Sokolova, M. (2013). Ammonium hydrogen carbonate provided viscous slurry foaming - a novel technology for the preparation of porous ceramics. J. Eur. Ceram. Soc., 33, 3437-3443.10.1016/j.jeurceramsoc.2013.06.010Search in Google Scholar

McCann, M. T., Gilmore, B. F., Gorman, S. P. (2008). Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol., 60, 1551-1571.10.1211/jpp/60.12.000119000360Search in Google Scholar

Meurice, E., Leriche, A., Hornez, J. C., Bouchart, F., Rguiti, E., Boilet, L., Descampsa, M., Cambier, F. (2012). Functionalisation of porous hydroxyapatite for bone substitutes. J. Eur. Ceram. Soc., 32, 2673-2678.10.1016/j.jeurceramsoc.2012.01.014Search in Google Scholar

O’Gara, J. P, Humphreys, H. (2001). Staphylococcus epidermidis biofilms: Importance and implications. J. Med. Microbiol., 50 (7), 582-587.10.1099/0022-1317-50-7-58211444767Search in Google Scholar

Peel, T. N., Cheng, A. C., Buising, K. L., Choong, P. F. (2012). The microbiological aetiology, epidemiology and clinical profile of prosthetic joint infections: Are current antibiotic prophylaxis guidelines effective? Antimicrob. Agents Chemother., 56, 2386-2391.10.1128/AAC.06246-11Search in Google Scholar

Pritchard, E. M., Valentin, T., Panilaitis, B., Omenetto, F., Kaplan, D. L. (2013). Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv. Funct. Mater., 23 (7), 854-861.10.1002/adfm.201201636Search in Google Scholar

Reinis, A., Pilmane, M., Stunda, A., Vetra, J., Kroica, J., Rostoka, D., Salms, G., Vostroilovs, A., Dons, A., Berzina-Cimdina, L. (2010). An in vitro and in vivo study on the intensity of adhesion and colonization by Staphylococcus epidermidis and Pseudomonas aeruginosa on originally synthesized biomaterials with different chemical composition and modified surfaces and their effect on expression of TNF- á, â-defensin 2 and IL-10 in tissues. Medicina, 47 (10), 560-565.Search in Google Scholar

Ruckh, T. T., Oldinski, R. A., Carroll, D. A., Mikhova, K., Bryers, J. D., Popat., K. C. (2012). Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J. Mater. Sci. Mater. Med., 23 (6), 1411-1420.10.1007/s10856-012-4609-3Search in Google Scholar

Sampedro, M. F., Piper, K. E., McDowell, A., Patrick, S., Mandrekar, J. N., Rouse, M. S., Steckelberg, J. M., Patel, R. (2009). Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn. Microbiol. Infect. Dis., 64 (2), 138-145Search in Google Scholar

Sokolova, M., Putniòð, A., Kreicbergs, I., Loès, J. (2014). Scale-up of wet precipitation calcium phosphate synthesis. Key Eng. Mater., 604, 216-219.10.4028/www.scientific.net/KEM.604.216Search in Google Scholar

von Eiff, C., Peters G., Heilmann, C. (2002). Pathogenesis of infections due to coagulase- negative staphylococci. Lancet Inf. Dis., 2 (11), 677-685.10.1016/S1473-3099(02)00438-3Search in Google Scholar

Xiong, M. H., Bao, Y., Yang, X. Z., Zhu, Y. H., Wang, J. (2012). Delivery of antibiotics with polymeric particles. Adv. Drug Delivery Rev., 78 (30), 63-76.Search in Google Scholar

Xu, Q., Czernuszka, J. T. (2008). Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. J. Control Release, 128 (2), 146-15310.1016/j.jconrel.2008.01.01718325617Search in Google Scholar

Yuehuei, H. A., Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Appl. Biomater., 43, 338-348.Search in Google Scholar

Zeller, V., Ghorbani, A., Strady, C., Leonard, P., Mamoudy, P., Desplaces, N. (2007). Propionibacterium acnes: An agent of prosthetic joint infection and colonization. J. Infect., 55, 119-124.10.1016/j.jinf.2007.02.00617418419Search in Google Scholar

Zimmerli, W., Trampuz, A., Ochsner, P. E. (2004). Prosthetic-joint infections. New Engl. J. Med., 351 (16), 1645-1654.10.1056/NEJMra04018115483283Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics