Open Access

Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution


Cite

Antal, M. J., Plett, E. G., Chung, T. P. (2006). Recent progress in kinetic models for coal pyrolysis. Available at: http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/22_2_NEW%20ORLEANS_03-77_0137.pdf (accessed 10 April 2016).Search in Google Scholar

Anthony, D. B., Howard, J. B. (1976). Coal devolatilization and hydro- gasification. American Institute of Chemical Engineers (AIChE) J., 22, 625-656.10.1002/aic.690220403Search in Google Scholar

Armstrong, R., Kulesza, B. L. J. (1981). An approximate solution to the equation x = exp(?x/?). Bull. Inst. Math. Appl., 17, 56.Search in Google Scholar

Brown, M. E. (1988). Introduction to Thermal Analysis Techniques and Applications. New York: Chapman and Hall. 224 pp.10.1007/978-94-009-1219-9Search in Google Scholar

Burnham, A. K., Schmidt, B. J., Braun, R. L (1995). A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Organ. Geochem., 23 (10), 931-939.10.1016/0146-6380(95)00069-0Search in Google Scholar

Burnham, A. K., Braun, R. L. (1999). Global kinetic analysis of complex materials. Energy Fuels, 13 (1), 1-22.10.1021/ef9800765Search in Google Scholar

Capart, R., Khezami, L., Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysis of microgranular cellulose. Thermochim. Acta, 417 (1), 79-89.10.1016/j.tca.2004.01.029Search in Google Scholar

Conesa, J. A, Marcilla, A., Caballero, J. A., Font, R. (2001). Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J. Anal. Appl. Pyrolysis, 58-59, 617-633.10.1016/S0165-2370(00)00130-3Search in Google Scholar

Conesa, J. A., Caballero, J. A., Marcilla, A., Font, R. (1995). Analysis of different kinetic model in the dynamic pyrolysis of cellulose. Thermochim. Acta, 254, 175-192.10.1016/0040-6031(94)02102-TSearch in Google Scholar

Criado, J. M., Jiménez, P. E. S., Pérez-Maqueda, L. A. (2005). Sample controlled thermal analysis and kinetics. J. Therm. Anal. Cal., 80 (1), 27-33.10.1007/s10973-005-0609-6Search in Google Scholar

Dhaundiyal, A., Tewari, P. C. (2015). Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. Acta Technol. Agricult., 18 (2), 29-35.10.1515/ata-2015-0007Search in Google Scholar

Dhaundiyal, A., Gupta, V. K. (2014). The analysis of pine needles as a substrate for gasification. J. Water, Energy Environ., 15, 73-8110.3126/hn.v15i0.11299Search in Google Scholar

Ferdous, D., Dalai, A. K., Bej, S. K., Thring, R. W. (2002). Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels, 16 (6), 1405-141210.1021/ef0200323Search in Google Scholar

Folgueras, M. B., Díaz, R. M., Xiberta, J., Prieto, I. (2003). Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel, 82 (15-17), 1051-1055.10.1016/S0016-2361(03)00161-3Search in Google Scholar

Galgano, A., Blasi, C. D. (2003). Modeling wood degradation by the unreacted-core-shrinking approximation. Ind. Eng. Chem. Res., 42 (10), 2101-2111.10.1021/ie020939oSearch in Google Scholar

Ghosh, M. K., Ghosh, U. K. (2011). Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains. Bio Res., 6 (2), 1556-1575 Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics