Cite

Agarwal, L., Isar, J., Meghwanshi, G. K., Saxena, R. K. (2007). Influence of environmental and nutritional factors on succinic acid production and enzyme of reverse tricarboxylic acid cycle from Enterococcus flavescens Enzym. Microb. Tech., 40 (4), 629-636.10.1016/j.enzmictec.2006.05.019Search in Google Scholar

Archambault, J. C., Bonte, F., Cauchard, J. H. (2008). FR. Patent No. 2911779.Search in Google Scholar

Barletta, E., Wandelt, K. (2011). High resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber. J. Non-Cryst. Solids, 357 (5), 1473-1478.10.1016/j.jnoncrysol.2010.12.039Search in Google Scholar

Beck, C. W., Wilbur, E., Meret, S. (1964). Infra-red spectra and the origin of amber. Nature, 201 (4916), 256-257.Search in Google Scholar

Brody, R. H., Edwards, H. G. M. (2001). A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim. Acta, Part A, 57, 1325-1338.10.1016/S1386-1425(01)00387-0Search in Google Scholar

Chen, S. W., Xin, Q., Kong, W. X., Min, L., Li, J. (2003). Anxiolytic-like effect of succinic acid in mice. Life Sci., 73 (25), 3257-3264.10.1016/j.lfs.2003.06.017Search in Google Scholar

Dastjerdi, R., Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 79 (1), 5-18.10.1016/j.colsurfb.2010.03.029Search in Google Scholar

Dunlop, J. A. (2006). Baltic amber harvestman types (Arachnida: Opiliones: Eupnoi and Dyspnoi). Fossil Record - Mitteilungen aus dem Museum für Naturkunde, 9 (2), 167-182.10.1002/mmng.200600006Search in Google Scholar

Fasahat, F., Dastjerdi, R., Mojtahedi, M. R. M., Hoseini, P. (2015). Wear properties of high speed spun multi-component PA6 nanocomposite fabrics; abrasion resistance mechanism of nanocomposites. Wear, 322, 117-125.10.1016/j.wear.2014.10.019Search in Google Scholar

Grimalt, J. O., Simoneit, B. R. T., Hatcher, P. G., Nissenbaum, A. (1988). The molecular composition of ambers. Org. Geochem., 13 (4), 677-690.10.1016/0146-6380(88)90089-7Search in Google Scholar

Hazelwood, T. L. (2001). Can’t Live Without it: The Story Haemoglobin in Sickness and in Health. Nova Science Publishing Inc, New York. 226 pp.Search in Google Scholar

Ibanes, C., David, L., De Boissieu, M., Séguéla, R., Epicier, T., Robert, G. (2004). Structure and mechanical behavior of nylon-6 fibres filled with organic and mineral nanoparticles. I. Microstructure of spun and drawn fibres. J. Polym. Sci., Part B: Polym. Phys., 42 (21), 3876-3892.Search in Google Scholar

Ibanes, C., Boissieu, M. de, David, L., Seguela, R. (2006). High temperature behaviour of the crystalline phases in unfilled and clay-filled nylon 6 fibres. Polymer, 47 (14), 5071-5079.Search in Google Scholar

Lambert, J. B., Frye, J. S. (1982). Carbon functionalities in amber. Science, 217 (4554), 55-57.Search in Google Scholar

Ïaðenko, I. (2014). Dzintara ceļš-Latvijas nākotne pasaulē [Lyashenko, I. Amber Way: Towards the Future of Latvia in the World]. MantoPrint, Riga. 225 pp. (in Latvian).Search in Google Scholar

Sprudza, D., Lasenko, I., Roga, S., Meirena, V., Bozileva, E. (2009). Assessment of harmlessness of modified amber powder tissues serviette. In: Rīgas Stradiņa Universitātes Zinātniskie Raksti. 7. sēj. [Research Papers of Rīga Stradiņš University. Vol. 7], Rīga, pp. 70-78.Search in Google Scholar

Synoradzki, L., Arct, J., Safarzynski, S., Hajmowicz, H., Sobiecka, A., Dankowska, E. (2012). Characteristics and application of Baltic amber in pharmaceutical and cosmetic industries. Przemysl Chemiczny, 91 (1), 89-94.Search in Google Scholar

Matuszewska, A., John, A. (2004). Some possibilities of thin layer chromatographic analysis of the molecular phase of Baltic amber and other natural resins. Acta Chromatogr., 14, 82-91.Search in Google Scholar

Mie, Y., Kishita, M., Nishiyama, K., Taniguchi, I. (2008). Interfacial electron transfer kinetics of myoglobins chemically modified with succinic anhydride at an indium oxide electrode. J. Electroanal. Chem., 624 (1-2), 305-309.10.1016/j.jelechem.2008.06.028Search in Google Scholar

Mills, J. S., White, R., Gough, L. J. (1984). The chemical composition of Baltic amber. Chem. Geol., 47 (1-2), 15-39.10.1016/0009-2541(84)90097-4Search in Google Scholar

Pakutinskiene, I., Kiuberis, J., Bezdicka, P., Senvaitiene, J., Kareiva, A. (2007). Analytical characterization of Baltic amber by FTIR, XRD and SEM. Canad. J. Anal. Sci. Spectroscopy, 52 (5), 287-294.Search in Google Scholar

Pastorelli, G. (2011).Acomparative study by infrared spectroscopy and optical oxygen sensing to identify and quantify oxidation of Baltic amber in different ageing conditions. J. Cult. Herit, 12 (2), 164-168.10.1016/j.culher.2010.11.002Search in Google Scholar

Pastorelli, G., Richter, J., Shashoua, Y. (2011). Photoageing of Baltic amber: Influence of daylight radiation behind window glass on surface colour and chemistry. Polym. Degrad. Stab., 96 (11), 1996-2001.10.1016/j.polymdegradstab.2011.08.013Search in Google Scholar

Pastorelli, G., Shashoua, Y., Richter, J. (2013). Hydrolysis of Baltic amber during thermal ageing-an infrared spectroscopic approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 124-128.10.1016/j.saa.2012.12.072Search in Google Scholar

Pastorelli, G., Shashoua, Y., Richter, J. (2013). Surface yellowing and fragmentation as warning signs of depolymerisation in Baltic amber. Polym. Degrad. Stab., 98 (11), 2317-2322.10.1016/j.polymdegradstab.2013.08.009Search in Google Scholar

Penning, J. P., Ruiten, J. van, Brouwer, R., Gabriëlse, W. (2003). Orientation and structure development in melt-spun Nylon-6 fibres. Polymer, 44 (19), 5869-5876.10.1016/S0032-3861(03)00535-4Search in Google Scholar

Ragazzi, E., Roghi, G., Giaretta, A., Gianolla, P. (2003). Classification of amber based on thermal analysis. Thermochimica Acta, 404 (1-2), 43-54.10.1016/S0040-6031(03)00062-5Search in Google Scholar

Schäfer, K. (1999). Melt spinning: technology. In: Karger-Kocsis, J. Polypropylene. Springer, Netherlands, pp. 440-445.10.1007/978-94-011-4421-6_61Search in Google Scholar

Synoradzki, L., Arct, J., Safarzynski, S., Hajmowicz, H., Sobiecka, A., Dankowska, E. (2012). Characteristics and application of Baltic amber in pharmaceutical and cosmetic industries. Przemysl Chemiczny, 91 (1), 89-94.Search in Google Scholar

Thrall, M. A., Baker, D. C., Lassen, E. D. (2004). Veterinary Hematology and Clinical Chemistry. Lippincot Williams & Wilkins, Philadelphia. 618 pp.Search in Google Scholar

Tonidandel, L., Ragazzi, E., Traldi, P. (2009). Mass spectrometry in the characterization of ambers. II. Free succinic acid in fossil resins of different origin. Rapid Commun. Mass Spectrom., 23 (3), 403-408.Search in Google Scholar

Utracki, L. A. (2006). Fibres from polymeric nanocomposites. Indian J. Fibre Text. Res., 31 (1), 15-28.Search in Google Scholar

Valeria, M. (1968). The analysis of archeological amber and amber from the Baltic Sea by thin-layer chromatography. J. Chromatogr. A, 33, 24-28.Search in Google Scholar

Valeria, M., Roberto, S. (1985). Correlations between Baltic amber and Pinus resins. Phytochem., 24, 12-17.Search in Google Scholar

Yamamoto, S., Otto, A., Krumbiegel, G., Simoneit, B. R. T. (2006). The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany. Rev. Palaeobot. Palynol., 140 (1-2), 27-49.10.1016/j.revpalbo.2006.02.002Search in Google Scholar

Zhao, J., Ragazzi, E., McKenna, G. B. (2013). Something about amber: Fictive temperature and glass transition temperature of extremely old glasses from copal to Triassic amber. Polymer, 54 (26), 7041-7047. 10.1016/j.polymer.2013.10.046Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics