Open Access

An Optimization Study on an Eco-Friendly Engine Cycle Named as Dual-Miller Cycle (DMC) for Marine Vehicles

   | Oct 11, 2017

Cite

1. Al-Sarkhi, A., Akash, B.A. & Jaber, J.O., 2002. Efficiency of Miller Engine at Maximum Power Density. Int Commun Heat Mass, 29, pp.1159-1167.10.1016/S0735-1933(02)00444-XSearch in Google Scholar

2. Al-Sarkhi, A., Jaber, J.O., Probert, S.D., 2006. Efficiency of a Miller engine. Appl Energ, 83, pp.343–351.10.1016/j.apenergy.2005.04.003Open DOISearch in Google Scholar

3. Al-Sarkhi, A., Al-Hinti, I., Abu-Nada, E., Akash, B., 2007. Performance evaluation of irreversible Miller engine under various specific heat models. Int Commun Heat Mass, 34, pp.897–906.10.1016/j.icheatmasstransfer.2007.03.012Open DOISearch in Google Scholar

4. Anderson, M., Assanis, D., Filipi, Z., 1998. First and second law analyses of a naturally-aspirated, Miller cycle, SI engine with late intake valve closure. SAE Technical Paper Series, 980889, pp.1–16.10.4271/980889Search in Google Scholar

5. Benajes, J., Molina, S., Novella, R., Belarte, E., 2014. Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine. Energy, 71, 355-366.10.1016/j.energy.2014.04.083Search in Google Scholar

6. Chen, L., Wu, C. & Sun, F.R., 1999. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn., 24(4), pp.327-359. Chen, L. & Sun, F.R., 2004. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers,10.1515/JNETDY.1999.020Search in Google Scholar

7. Chen, L., 2005. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles. Beijing: High Education Press. (in Chinese).Search in Google Scholar

8. Chen, L., Ge, Y., Sun, F., & Wu, C., 2006. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible Dual cycle. Energy Convers. Manage., 47(18/19), pp.3224-3234.10.1016/j.enconman.2006.02.016Search in Google Scholar

9. Chen, L., Ge, Y., Sun, F., & Wu, C., 2010. The performance of a Miller cycle with heat transfer, friction and variable specific heats of working fluid. Termotehnica, 14(2), pp.24-32.Search in Google Scholar

10. Chen, L., Ge, Y., Sun, F., & Wu, C., 2011. Finite time thermodynamic modeling and analysis for an irreversible Miller cycle. Int. J. Ambient Energy, 32(2), pp.87-94.10.1080/01430750.2011.584457Search in Google Scholar

11. Chen, L. & Xia, S.J., 2016. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes. Beijing: Science Press. (in Chinese).Search in Google Scholar

12. Chen, L., Xia, S.J. & Li, J., 2016. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles. Beijing: Science Press. (in Chinese).Search in Google Scholar

13. Clarke, D., & Smith, W.J., 1997. Simulation, implementation and analysis of the Miller cycle using an inlet control rotary valve, Variable valve actuation and power boost. SAE Special Publications, 1258(970336), pp. 61–70.10.4271/970336Search in Google Scholar

14. Ebrahimi, R., 2011a. Thermodynamic modeling of performance of a Miller cycle with engine speed and variable specific heat ratio of working fluid. Computers and Mathematics with Applications, 62, pp.2169–2176.10.1016/j.camwa.2011.07.002Search in Google Scholar

15. Ebrahimi, R., 2011b. Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53, pp.1289-1297.10.1016/j.mcm.2010.12.015Search in Google Scholar

16. Ebrahimi, R., 2012. Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length. Applied Math Modeling, 36, pp.4073–4079.10.1016/j.apm.2011.11.031Search in Google Scholar

17. EES Academic Professional Edition, 2016. V.10.112-3D, USA, F-Chart Software.Search in Google Scholar

18. Ferguson, C.R., 1986. Internal combustion engines – applied thermosciences. New York: John Wiley & Sons Inc.Search in Google Scholar

19. Gahruei, M.H,, Jeshvaghani, H.S., Vahidi, S., & Chen, L., 2013. Mathematical modeling and comparison of air standard Dual and Dual-Atkinson cycles with friction, heat transfer and variable specific-heats of the working fluid. Applied Mathematical Modelling, 37(12-13), pp.7319-7329.10.1016/j.apm.2013.02.025Search in Google Scholar

20. Ge, Y., Chen, L., Sun, F., & Wu, C., 2005a. Reciprocating heat-engine cycles. Appl. Energy, 81, pp.397–408.10.1016/j.apenergy.2004.09.007Search in Google Scholar

21. Ge, Y., Chen, L., Sun, F., & Wu, C., 2005b. Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle. Int. Comm. Heat Mass Transfer, 32(8), pp.1045-1056.10.1016/j.icheatmasstransfer.2005.02.002Search in Google Scholar

22. Ge, Y., Chen, L., Sun, F., & Wu, C., 2005c. Effects of heat transfer and variable specific heats of working fluid on performance of a Miller cycle. Int. J. Ambient Energy, 26(4), pp.203-214.10.1080/01430750.2005.9674991Search in Google Scholar

23. Ge, Y., Chen, L., Sun, F., & Wu, C., 2008. Finite-Time Thermodynamic Modelling and Analysis of an Irreversible Otto-Cycle. Appl Energy, 85, pp.618-24.10.1016/j.apenergy.2007.09.008Search in Google Scholar

24. Ge, Y., Chen, L., & Sun, F., 2009. Finite time thermodynamic modeling and analysis for an irreversible Dual cycle. Math. Comput. Model., 50(1-2), pp.101-108.10.1016/j.mcm.2009.04.009Search in Google Scholar

25. Ge, Y., Chen, L., & Sun, F., 2016. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 18(4), pp.139.10.3390/e18040139Search in Google Scholar

26. Gonca, G., 2016a. Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine). Energy, 109, pp.152–159.10.1016/j.energy.2016.04.049Search in Google Scholar

27. Gonca, G., 2016b. Thermodynamic analysis and performance maps for the irreversible Dual–Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses. Energy Conversion and Management, 111, pp.205–216.10.1016/j.enconman.2015.12.059Search in Google Scholar

28. Gonca, G., 2017a. Thermo-Ecological Analysis of Irreversible Dual-Miller Cycle (DMC) Engine Based on the Ecological Coefficient of Performance (ECOP) Criterion, Iran J Sci Technol Trans Mech Eng (In press.), doi:10.1007/s40997-016-0060-2.10.1007/s40997-016-0060-2Open DOISearch in Google Scholar

29. Gonca, G., 2017b. Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters. Energy, 124, pp. 579-588.10.1016/j.energy.2017.02.096Search in Google Scholar

30. Gonca, G., 2017c. Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM). Applied Math. Model., 44, pp. 655-675.10.1016/j.apm.2017.02.010Search in Google Scholar

31. Gonca, G., 2017d. Performance Analysis of A Spark Ignition (SI) Otto Cycle (OC) Gasoline Engine Under Realistic Power (RP) and Realistic Power Density (RPD) Conditions. Journal of Polytechnic, 20(2), pp.475-486. Gonca, G., Sahin, B., Ust, Y., & Parlak A., 2013a. A study on late intake valve closing Miller cycled diesel engine. Arab J Sci Eng, 38, pp.383–393.10.1007/s13369-012-0437-5Search in Google Scholar

32. Gonca, G., Sahin, B., & Ust, Y., 2013b. Performance maps for an air-standard irreversible dual-Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 5, pp.285–290.10.1016/j.energy.2013.02.004Open DOISearch in Google Scholar

33. Gonca, G., & Sahin, B., 2014. Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion. The Scientific World Journal, 815787, pp.1–10.10.1155/2014/815787413861125170525Search in Google Scholar

34. Gonca, G., Sahin, B., Ust, Y., Parlak, A., & Safa, A., 2015a. Comparison of Steam Injected Diesel Engine and Miller Cycled Diesel Engine By Using Two Zone Combustion Model. J Energy Inst, 88(1), pp.43–52.10.1016/j.joei.2014.04.007Search in Google Scholar

35. Gonca, G., Sahin, B., Parlak, A., Ust, Y., Ayhan, V., Cesur, I., & Boru, B., 2015b. Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Appl.Energy, 138, pp.11–20.10.1016/j.apenergy.2014.10.043Search in Google Scholar

36. Gonca, G., Sahin, B., & Ust, Y., 2015c. Investigation of heat transfer influences on performance of air-standard irreversible dual-Miller cycle. J. Thermophys Heat Trans, 29(4), pp.678–683.10.2514/1.T4512Search in Google Scholar

37. Gonca, G., Sahin, B., Parlak, A., Ayhan, V., Cesur, I., & Koksal, S., 2015d. Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 93, pp.795–800.10.1016/j.energy.2015.08.032Search in Google Scholar

38. Gonca, G., Sahin, B., Ust, Y., & Parlak, A., 2015e. Comprehensive performance analyses and optimization of their reversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Appl Thermal Eng, 85, pp.9–20.10.1016/j.applthermaleng.2015.02.041Search in Google Scholar

39. Gonca, G., & Sahin, B., 2016. The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40, pp.3764-3782.10.1016/j.apm.2015.10.044Search in Google Scholar

40. Gonca, G., & Sahin, B., 2017a. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Applied Thermal Engineering, 118, pp.138-146.10.1016/j.applthermaleng.2017.02.039Open DOISearch in Google Scholar

41. Gonca, G., & Sahin, B., 2017b. Thermo-ecological performance analysis of a Joule-Brayton cycle (JBC) turbine with considerations of heat transfer losses and temperature-dependent specific heats. Energy Conversion and Management 138, pp. 97-105.10.1016/j.enconman.2017.01.054Search in Google Scholar

42. Gonca, G., Sahin, B., Parlak, A., Ayhan, V., Cesur, I., & Koksal, S., 2017. Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE). Energy, 119, pp.926-937.10.1016/j.energy.2016.11.048Search in Google Scholar

43. Hohenberg, G., 1979. Advanced Approaches for Heat Transfer Calculations. SAE, 790825.10.4271/790825Search in Google Scholar

44. Imperato, M., Kaario, O., Sarjovaara, T., Larmi, M., 2016. Split fuel injection and Miller cycle in a large-bore engine. Applied Energy, 162, pp.289–297.10.1016/j.apenergy.2015.10.041Search in Google Scholar

45. Li, T., Gao, Y., Wang, J., & Chen, Z., 2014. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs LIVC. Energy Convers and Manage, 79, pp.59–65.10.1016/j.enconman.2013.12.022Open DOISearch in Google Scholar

46. Li, T., Wang, B., Zheng, B., 2016. A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management, 123, pp.140–152.10.1016/j.enconman.2016.06.038Search in Google Scholar

47. Lin, J., Chen, L., Wu, C., & Sun, F., 1999. Finite-Time Thermodynamic Performance of a Dual Cycle. Int J Energy Res, 23(9), pp.765–772.10.1002/(SICI)1099-114X(199907)23:9<765::AID-ER513>3.0.CO;2-ZOpen DOISearch in Google Scholar

48. Lin, J.C., & Hou, S.S., 2008. Effects of Heat Loss As Percentage of Fuel’s Energy, Friction And Variable Specific Heats Of Working Fluid On Performance of Air Standart Otto Cycle. Energ Convers Manage, 49, pp.1218–27.10.1016/j.enconman.2007.09.002Search in Google Scholar

49. Luo, Q., Sun, B., 2016. Effect of the Miller cycle on the performance of turbocharged hydrogen internal combustion engines. Energy Conversion and Management, 123, pp.209–217.10.1016/j.enconman.2016.06.039Search in Google Scholar

50. Martins, M.E.S., & Lanzanova, T.D.M., 2015. Full-load Miller cycle with ethanol and EGR: Potential benefits and challenges. Applied Thermal Engineering, 90, 274-285.10.1016/j.applthermaleng.2015.06.086Search in Google Scholar

51. Mikalsen, R., Wang, Y.D., & Roskilly, A.P., 2009. A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications. Applied Energy, 86, pp.922–927.10.1016/j.apenergy.2008.09.021Open DOISearch in Google Scholar

52. Miller, R.H., 1947. Supercharging and internal cooling cycle for high output, Transactions of ASME, 69, pp.453–457.10.1115/1.4017434Search in Google Scholar

53. Miller, R.H., & Lieberherr, H.U., 1957. The Miller supercharging system for diesel and gas engines operating characteristics, CIMAC, Proceedings of the 4th International Congress on Combustion Engines, Zurich, June 15–22, pp. 787–803.Search in Google Scholar

54. Mousapour, A., Hajipour, A., Rashidi, M.M., Freidoonimehr, N., 2016. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, 94, pp.100-109.10.1016/j.energy.2015.10.073Open DOISearch in Google Scholar

55. Okamoto, K., Zhang, F.R., Morimoto, S., & Shoji, F., 1998. Development of a high-performance gas engine operating at a stoichiometric condition – effect of Miller cycle and EGR, Proceedings of CIMAC Congress, Copenhagen, pp. 1345–1360.Search in Google Scholar

56. Rashidi, M.M., Mousapour, & A., Hajipour, A., 2014. The effects of heat transfer on the exergy efficiency of an air-standard Otto cycle. Heat Mass Transfer, 50, pp.1177–83.10.1007/s00231-014-1318-0Open DOISearch in Google Scholar

57. Rashidi, M.M., & Hajipour, A., 2013. Comparison of Performances of Air-Standard Atkinson, Diesel and Otto Cycles with Constant Specific Heats. Int J Advanced Design and Manufacturing Technology, 6, pp.57–62.Search in Google Scholar

58. Rashidi, M.M., Hajipour, A., Mousapour, A., Ali, M., Xie, G., & Freidoonimehr, N., 2014. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations. Advances in Mechanical Engineering, 359872, pp.1–16.10.1155/2014/359872Search in Google Scholar

59. Rashidi, M.M., Hajipour, A., & Fahimirad, A., 2014. First and Second-Laws Analysis of an Air-Standard Dual Cycle With Heat Loss Consideration. International Journal of Mechatronics, Electrical and Computer Technology, 4, pp.315-332.Search in Google Scholar

60. Rashidi, M.M., Hajipour, A., & Baziar, P., 2014. Influence of Heat Loss on the Second-Law Efficiency of an Otto Cycle. International Journal of Mechatronics, Electrical and Computer Technology, 4, pp.922-933.Search in Google Scholar

61. Rinaldini, C.A., Mattarelli, E., & Golovitchev, V.I., 2013. Potential of the Miller cycle on a HSDI diesel automotive engine. Applied Energy, 112, pp.102-19.10.1016/j.apenergy.2013.05.056Search in Google Scholar

62. Shimogata, S., Homma, R., Zhang, F.R., Okamoto, K., & Shoji, F., 1997. Study on Miller cycle gas engine for co-generation systems-numerical analysis for improvement of efficiency and power. SAE Paper No. 971709, pp. 61–67.Search in Google Scholar

63. Stebler, H., Weisser, G., Horler, H., & Boulouchos, K., 1996. Reduction of NOx emissions of D.I. Diesel engines by application of the Miller-system: an experimental and numerical investigation, SAE Paper No. 960844, pp. 1238–1248.Search in Google Scholar

64. Ust, Y., Arslan, F., Ozsari, I., & Cakir, M., 2015. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria. Energy, 90, pp.552–559.10.1016/j.energy.2015.07.081Search in Google Scholar

65. Wang, W.H., Chen, L., Sun, F., & Wu, C., 2002. The effects of friction on the performance of an air standard Dual cycle. Exergy, An Int. J., 2(4), pp.340-344.10.1016/S1164-0235(02)00067-5Search in Google Scholar

66. Wang, Y.D., & Ruxton, T., 2004. An experimental investigation of NOx emission reduction from automotive engine using the miller cycle. Proceedings of ICEF2004, ASME Internal Combustion Engine Division, Fall Technical Conference, Long Beach, CA, USA, October 24–27.10.1115/ICEF2004-0937Search in Google Scholar

67. Wang, Y., Zeng, S., & Huang, J., 2005. Experimental investigation of applying Miller cycle to reduce NOx emission from diesel engine. Proc. IMechE, Part A: J. Power and Energy, 219, pp.631-638.10.1243/095765005X31289Search in Google Scholar

68. Wang, Y., Lin, L., & Roskilly, A.P., 2007. An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Appl Therm Eng, 27, pp.1779–1789.10.1016/j.applthermaleng.2007.01.013Open DOISearch in Google Scholar

69. Wang, Y., Lin, L., & Zeng, S., 2008. Application of the Miller cycle to reduce NOx emissions from petrol engines. Appl. Energy, 85, pp.463–474.10.1016/j.apenergy.2007.10.009Search in Google Scholar

70. Wang, Y., Zu, B., Xu Y., Wang, Z., Liu, J., 2016. Performance analysis of a Miller cycle engine by an indirect analysis method with sparking and knock in consideration. Energy Conversion and Management, 119, pp.316–326.10.1016/j.enconman.2016.03.083Search in Google Scholar

71. Wu, C., Chen, L.G. & Chen, J.C., 1999. Recent Advances in Finite Time Thermodynamics. New York: Nova Science Publishers,Search in Google Scholar

72. Wu, C., Puzinauskas, P.V. & Tsai, J.S., 2003. Performance analysis and optimization of a supercharged Miller cycle Otto engine. Appl Therm Eng, 23, pp.511-521.10.1016/S1359-4311(02)00239-9Open DOISearch in Google Scholar

73. Tavakoli, S., Jazayeri, S.A., Fathi, M., Jahanian, O., 2016. Miller cycle application to improve lean burn gas engine performance. Energy, 109, pp.190-200.10.1016/j.energy.2016.04.102Search in Google Scholar

74. Zhao, Y., & Chen, J., 2007. Performance analysis of an irreversible Miller heat engine and its optimum criteria. Appl Therm Eng, 27, pp.2051–2058. Zhao, J., 2017. Research and application of over-expansion cycle (Atkinson and Miller) engines–A review. Applied Energy, 185, pp.300–319.Search in Google Scholar

75. Zhu, S., Deng, K., Liu, S., Qu, S., 2015. Comparative analysis and evaluation of turbocharged Dual and Miller cycles under different operating conditions. Energy, 93, pp.75-87.10.1016/j.energy.2015.09.028Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences