Cite

1. Adamkowski A., Lewandowski M.: A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines, J. Fluids Eng., 131, 7, 2009.10.1115/1.3153365Search in Google Scholar

2. Adamkowski A., Lewandowski M.: Experimental examination of unsteady friction models for transient pipe flow simulation, J. Fluids Eng., 128, pp. 1351-1363, 2006.Search in Google Scholar

3. Adamkowski A., Lewandowski M.: Investigation of hydraulic transients in a pipeline with column separation, J. Hydraulic Eng., 138, 11, pp. 935-944, 2012.10.1061/(ASCE)HY.1943-7900.0000596Search in Google Scholar

4. Górski Z.: Construction and operation of marine hydraulic machinery, Trademar, Gdynia, 2008.Search in Google Scholar

5. Hadj-Taïeb L., Hadj-Taïeb E.: Modelling vapour cavitation in pipes with fluid–structure interaction, International Journal of Modelling and Simulation, 29, 3, pp. 263-270, 200910.1080/02286203.2009.11442532Search in Google Scholar

6. Hadj-Taïeb L., Hadj-Taïeb E.: Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation, International Journal of Modelling and Simulation, 29, 2, pp. 206-213, 2009.10.1080/02286203.2009.11442526Search in Google Scholar

7. Henclik S.: A numerical approach to the standard model of water hammer with fluid-structure interaction, Journal of Theoretical and Applied Mechanics, 53, 3, pp. 543-555, 2015.10.15632/jtam-pl.53.3.543Search in Google Scholar

8. Johnston D.N.: Efficient methods for numerical modelling of laminar friction in fluid lines. J. Dynamic Systems Measurement and Control, ASME, 128, 4, pp. 829 – 834, 2006.10.1115/1.2361320Search in Google Scholar

9. Karadžić U. et al.: Valve-induced water hammer and column separation in a pipeline apparatus, Strojniški Vestnik – Journal of Mechanical Engineering, 60, 11, pp. 742-754, 2014.10.5545/sv-jme.2014.1882Open DOISearch in Google Scholar

10. Keramat A. et al.: Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, 28, 1, pp. 434-456, 2012.10.1016/j.jfluidstructs.2011.11.001Search in Google Scholar

11. Pezzinga G.: Evaluation of time evolution of mechanical parameters of polymeric pipes by unsteady flow runs, Journal of Hydraulic Engineering, 140, 12, paper 04014057, 2014.10.1061/(ASCE)HY.1943-7900.0000925Search in Google Scholar

12. Qiu Y. et al.: Suppressing water hammer of ship steering systems with hydraulic accumulator. Proc IMechE Part E: J Process Mechanical Engineering, Vol. 228 (2), pp. 136–148, 2014Search in Google Scholar

13. Reddy H.P. et al.: Estimation of decay coefficients for unsteady friction for instantaneous, acceleration-based models, Journal of Hydraulic Engineering, 138, pp. 260-271, 201210.1061/(ASCE)HY.1943-7900.0000508Search in Google Scholar

14. Soares A.K. et al.: Investigation of transient vaporous cavitation: experimental and numerical analyses, Procedia Engineering, 119, pp. 235-242, 2015.10.1016/j.proeng.2015.08.881Search in Google Scholar

15. Storli P., Nielsen T.: Transient friction in pressurized pipes. I: investigation of Zielke’s model, Journal of Hydraulic Engineering, 137, 5, pp. 577-584, 2011.Search in Google Scholar

16. Storli P., Nielsen T.: Transient friction in pressurized pipes. II: two-coefficient instantaneous acceleration–based model, Journal of Hydraulic Engineering, 137, 6, pp. 679-695, 2011.Search in Google Scholar

17. Urbanowicz, K. et al.: Universal weighting function in modeling transient cavitating pipe flow, J. Theoretical and Applied Mechanics, 50, 4, pp. 889-902, 2012.Search in Google Scholar

18. Urbanowicz, K., Zarzycki, Z.: Convolution Integral in Transient Pipe Flow, Proc. of the XXth Fluid Mechanics Conference KKMP2012, Gliwice, Poland, 17-20 September, on CD, 2012.Search in Google Scholar

19. Urbanowicz, K., Zarzycki, Z.: Improved lumping friction model for liquid pipe flow, J. Theoretical and Applied Mechanics, 53, 2, pp. 295-305, 2015.10.15632/jtam-pl.53.2.295Search in Google Scholar

20. Urbanowicz, K.: New approximation of unsteady friction weighting functions. Proc. of the 11th International Conference on Pressure Surges, Lisbon, Portugal, October 24-26, pp. 477 – 492, 2012.Search in Google Scholar

21. Vardy, A.E., Brown, J.M.B.: Approximation of turbulent wall shear stresses in highly transient pipe flows, Journal of Hydraulic Engineering, 133, 11, pp. 1219-1228, 2007.Search in Google Scholar

22. Vardy, A.E., Brown, J.M.B.: Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, pp. 233-257, 2004.10.1016/S0022-460X(03)00492-9Search in Google Scholar

23. Vardy, A.E., Brown, J.M.B.: Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, pp. 1011-1036, 2003.Search in Google Scholar

24. Wylie, E.B., Streeter, V.L.: Fluid transients in systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1993.Search in Google Scholar

25. Zanganeh R. et al.: Fluid-structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, 54, April, pp. 215-234, 201510.1016/j.jfluidstructs.2014.10.016Search in Google Scholar

26. Zielke W.: Frequency-dependent friction in transient pipe flow, Journal of Basic Engineering, ASME, 90, pp. 109–115, 1968.10.1115/1.3605049Open DOISearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences