Open Access

Influence of Water and Mineral Oil on the Leaks in Satellite Motor Commutation Unit Clearances


Cite

1. Balawender A.: Physical and mathematical model of losses in hydraulic motors. Developments in mechanical engineering, Gdansk University of Technology Publishers. Gdansk 2005.Search in Google Scholar

2. Bing X., Junhui Z., Huayong Y., Bin Z.: Investigation on the Radial Micro-motion about Piston of Axial Piston Pump. Chinese Journal of Mechanical Engineering, Vol. 26, No. 2, 2013. DOI: 10.3901/CJME.2013.02.325.10.3901/CJME.2013.02.325Open DOISearch in Google Scholar

3. Deptula A., Osinski P., Partyka M..: Identification of influence of part tolerances of 3PWR-SE pump on its total efficiency taking into consideration multi-valued logic trees 60. Polish Maritime Research, 1(93)/2017, vol. 24. DOI: 10.1515/pomr-2017-000610.1515/pomr-2017-0006Open DOISearch in Google Scholar

4. Dymarski C., Dymarski P.: Developing Methodology for Model Tests of Floating Platforms in Low-Depth Towing Tank. Archives of Civil and Mechanical Engineering, No 1/2016, DOI: dx.doi.org/10.1016/j.acme.2015.07.00310.1016/j.acme.2015.07.003Open DOISearch in Google Scholar

5. Gao J., Huang W., Quan L., Huang J.: The distributed parameter model of hydraulic axial piston motor and its application in hydraulic excavator swing systems. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, April 2017. DOI: 10.1177/095965181770409810.1177/0959651817704098Open DOISearch in Google Scholar

6. Gelesz P., Karczewski A., Kozak J., Litwin W., Piatek L.: Design Methodology for Small Passenger Ships on the Example of the Ferryboat Motława 2 Driven by Hybrid Propulsion System. Polish Maritime Research, special issue S1 (93) 2017, vol. 24. DOI: 10.1515/pomr-2017-002310.1515/pomr-2017-0023Open DOISearch in Google Scholar

7. Guzowski A., Sobczyk A.: Reconstruction of hydrostatic drive and control system dedicated for small mobile platform. American Society of Mechanical Engineers, 2014. DOI: dx.doi.org/10.1115/FPNI2014-7862.10.1115/FPNI2014-7862Open DOISearch in Google Scholar

8. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part I). Polish Maritime Research, No 4/2008. DOI: 10.2478/v10012-007-0095-9.10.2478/v10012-007-0095-9Open DOISearch in Google Scholar

9. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part II). Polish Maritime Research, No 1/2009. DOI: 10.2478/v10012-008-0012-x.10.2478/v10012-008-0012-xOpen DOISearch in Google Scholar

10. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part III). Methods of determining parameters for correct start-ups of hydraulic components and systems in low ambient temperatures. Polish Maritime Research, No 4/2009. DOI: 10.2478/v10012-008-0052-2.10.2478/v10012-008-0052-2Search in Google Scholar

11. Ke M., Ding F., Li B., Chen Z.: Exploration of the influence of backing pressure on the efficiency of hydraulic motor. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 37(10), October 2006.Search in Google Scholar

12. Kollek W., Osinski P., Wawrzynska U.: The influence of gear micropump body asymmetry on stress distribution. Polish Maritime Research, 2(65)/2010. DOI: 10.1515/pomr-2017-0007.10.1515/pomr-2017-0007Open DOISearch in Google Scholar

13. Landvogt B., Osiecki L., Patrosz P., Zawistowski T., Zylinski B.: Numerical simulation of fluid-structure interaction in the design process for a new axial hydraulic pump. Progress in Computational Fluid Dynamics, Vol. 14, Issue 1, 2014. DOI:doi.org/10.1504/PCFD.2014.059198.10.1504/PCFD.2014.059198Open DOISearch in Google Scholar

14. Litwin W., Olszewski A.: Water-Lubricated Sintered Bronze. Journal Bearings - Theoretical and Experimental Research. Tribology Transactions, vol. 57, No 1/2014.10.1080/10402004.2013.856980Search in Google Scholar

15. Lubinski J., Sliwinski P. Multi parameter sliding test result evaluation for the selection of material pair for wear resistant components of a hydraulic motor dedicated for use with environmentally friendly working fluids. Solid State Phenomena Vol. 225(2015). DOI: 10.4028/www.scientific.net/SSP.225.115.10.4028/www.scientific.net/SSP.225.115Open DOISearch in Google Scholar

16. Maczyszyn A.: Evaluation of losses in a hydraulic motor based on the SWSB - 63 motor tests. Polish Maritime Research, 4(17)/2010. DOI: 10.2478/v10012-010-0035-y.10.2478/v10012-010-0035-yOpen DOISearch in Google Scholar

17. Maczyszyn A.: Method of Sum of Power Losses as a Way for Determining the ki Coefficients of Energy Losses in Hydraulic Motor. Polish Maritime Research, 2(23)/2016. DOI: 10.1515/pomr-2016-0021.10.1515/pomr-2016-0021Open DOISearch in Google Scholar

18. Osiecki L., Patrosz P., Landvogt B., Piechna J., Zawistowski T., Zylinski B.: Simulation of fluid structure interaction in a novel design of high pressure axial piston hydraulic pump. Archive of Mechanical Engineering. The Journal of Committee on Machine Building of Polish Academy of Sciences, Vol. 60, Issue 4, 2013. DOI: 10.2478/meceng-2013-0031.10.2478/meceng-2013-0031Open DOISearch in Google Scholar

19. Osiecki L., Patrosz P., Zawistowski T., Landvogt B., Piechna J., Zylinski B.: Compensation of pressure peaks in PWK type hydraulic pumps. Key engineering materials, Vol. 490, 2011. DOI: 10.4028/www.scientific.net/KEM.490.33.10.4028/www.scientific.net/KEM.490.33Open DOISearch in Google Scholar

20. Osinski P., Deptula A., Partyka M.: Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees. Archives of Civil and Mechanical Engineering, No 4/2013, DOI: 10.1016/j.acme.2013.05.001.10.1016/j.acme.2013.05.001Search in Google Scholar

21. Paszota Z.: Energy losses in hydrostatic drive. LAP LAMBERT Academic Publishing, 2016.Search in Google Scholar

22. Paszota Z.: Energy losses in the hydraulic rotational motor - definitions and relations for evaluation of the efficiency of motor and hydrostatic drive. Polish Maritime Research, 2(65)/2010. DOI: 10.2478/v10012-010-0017-0.10.2478/v10012-010-0017-0Open DOISearch in Google Scholar

23. Paszota Z.: Power of energy losses in hydrostatic drive system elements – definition, relationships, ranges of changes, energy efficiencies. Part 1 – hydraulic motor. Drives and Control, 11/2007, Poland.Search in Google Scholar

24. Patrosz P.: Deformation in the axial clearance compensation node in the satellite pump unit. Hydraulics and Pneumatics 1/2014, Poland.Search in Google Scholar

25. Pobedza J., Sobczyk A.: Properties of high pressure water hydraulic components with modern coatings. Advanced Materials Research. Trans Tech Publications Ltd, 849/2014. DOI: 10.4028/www.scientific.net/AMR.849.100.10.4028/www.scientific.net/AMR.849.100Open DOISearch in Google Scholar

26. Sliwinski P.: New satellite pumps. Key Engineering Materials, No 490/2012. DOI: 10.4028/www.scientific.net/KEM.490.195.10.4028/www.scientific.net/KEM.490.195Open DOISearch in Google Scholar

27. Sliwinski P.: The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor. Archives of Civil and Mechanical Engineering, No 16/2016, DOI: 10.1016/j.acme.2016.04.003.10.1016/j.acme.2016.04.003Open DOISearch in Google Scholar

28. Sliwinski P.: The flow of liquid in flat gaps of satellite motors working mechanism. Polish Maritime Research 2/2014. DOI: 10.2478/pomr-2014-0019.10.2478/pomr-2014-0019Open DOISearch in Google Scholar

29. Sliwinski P.: The influence of water and mineral oil on volumetric losses in a hydraulic motor. Polish Maritime Research, special issue S1 (93) 2017, vol. 24. DOI: 10.1515/pomr-2017-0041.10.1515/pomr-2017-0041Open DOISearch in Google Scholar

30. Walczak P., Sobczyk A.: Simulation of water hydraulic control system of Francis turbine. American Society of Mechanical Engineers, 2014. doi: dx.doi.org/10.1115/FPNI2014-7814.10.1115/FPNI2014-7814Open DOISearch in Google Scholar

31. Wu D., Burton R., Schoenau G., Bitner D.: Modeling of orifice flow rate at very small openings. International Journal of Fluid Power, vol. 4, No. 1, April 2003.10.1080/14399776.2003.10781153Search in Google Scholar

32. Wu D., Burton R., Schoenau G.: An empirical discharge coefficient model for orifice flow. International Journal of Fluid Power, vol. 3, No. 3, December 2002.10.1080/14399776.2002.10781143Search in Google Scholar

33. Xiaogang Z., Long Q., Yang Y., Chengbin W., Liwei Y.: Output Characteristics of a Series Three-port Axial Piston Pump. Chinese Journal of Mechanical Engineering, Vol. 25, No. 3, 2012. DOI: 10.3901/CJME.2012.03.498.10.3901/CJME.2012.03.498Open DOISearch in Google Scholar

34. Yu H., Luo C., Wang H.: Performances of a Balanced Hydraulic Motor with Planetary Gear Train. Chinese Journal of Mechanical Engineering, Vol. 25, No. 4, 2012. DOI: 10.3901/CJME.2012.04.760.10.3901/CJME.2012.04.760Open DOISearch in Google Scholar

35. Zloto T., Nagorka A.: An efficient FEM for pressure analysis of oil film in a piston pump. Applied Mathematics and Mechanics, vol. 30, No 1/2009.10.1007/s10483-009-0106-zSearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences