Open Access

CFD Modeling of Syngas Combustion and Emissions for Marine Gas Turbine Applications


Cite

1. VianaM., et al., Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 90,pp. 96-105, 2014.10.1016/j.atmosenv.2014.03.046Search in Google Scholar

2. Wang C., Corbett J.J., Firestone J., Improving spatial representation of global ship emissions inventories. Environmental Science and Technology 42, pp. 193-199,2008.10.1021/es070079918350896Search in Google Scholar

3. EEA.: Transport indicators tracking progress towards environmental targets in Europe. The Contribution of transport to air quality.EEA, Copenhagen, 2012.Search in Google Scholar

4. Eyringer V., Köhler H. W., Lauer A., Lemper B., Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J. Geophys 110, D17306,2005.10.1029/2004JD005620Search in Google Scholar

5. Corbett J.J., Winebrake J.J., Green E.H., KasibhatlaP., Eyring V., LauerA., Mortality from ship emissions: a global assessment. Environmental Science and Technology 41, pp. 8512-85182007.10.1021/es071686z18200887Search in Google Scholar

6. Endresen Ø., Sørgård E., Sundet J.K., Dalsøren S.B., Isaksen I.S., Berglen T.F., Gravir G., Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, pp. 108, 2003.Search in Google Scholar

7. Ülpre H., Eames I., Environmental policy constraints for acidic exhaust gas scrubber discharges from ships. Marine Pollution Bulletin 88,pp. 292-301, 2014.10.1016/j.marpolbul.2014.08.02725284442Search in Google Scholar

8. IMO.: Second IMO GHG study. London, UK, 2009.Search in Google Scholar

9. RavenJ., Caldeira K., Elderfield H., Hoegh-Guldberg O., Liss P., Riebesell U., Shepherd J., Turley C., Watson A.: Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society: The Science Policy Section, 2005.Search in Google Scholar

10. Blatcher D., Eames I., Compliance of royal navy ships with nitrogen oxide emissions legislation. Mar. Pollut. Bull 74, pp. 10-18, 2013.10.1016/j.marpolbul.2013.07.01023906471Search in Google Scholar

11. CalleyaJ., PawlingR., GreigA., Ship impact model for technical assessment and selection of Carbon Dioxide Reducing Technologies (CRTs). Ocean Engineering 97, pp. 82-89,2015.10.1016/j.oceaneng.2014.12.014Search in Google Scholar

12. AzimovU., TomitaE., KawaharaN., and DolS. S., Combustion characteristics of syngas and natural gas in micro-pilot ignited dual-fuel engine. World Academy of Science, Engineering and Technology 6(12), pp. 1595-1602, 2012.Search in Google Scholar

13. Weaver C.: Natural gas vehicles - a review of the state of the art. SAE technical paper 892133, doi:10.4271/892133, 1989.Search in Google Scholar

14. Nichols R.J., The challenges of change in the auto industry: Why alternative fuels? J.Eng.Gas Turb Power 116,pp. 727-32, 1994.10.1115/1.2906879Search in Google Scholar

15. Lieuwen T., Yang V., Yetter R.: Synthesis gas combustion: Fundamentals and applications. Taylor & Francis Group, 2010.10.1201/9781420085358Search in Google Scholar

16. MuradovN. Z., and VezirogluT. N., Green path from fossil-based to hydrogen economy: An overview of carbon neutral technologies. Int. J. Hydrogen Energy 33,pp. 6804-6839, 2008.Search in Google Scholar

17. RiboldiL.,Bolland O., Pressure swing adsorption for coproduction of power and ultrapure H2 in an IGCC plant with CO2 capture. International Journal of Hydrogen Energy 41(25), pp. 10646-10660, 2016.Search in Google Scholar

18. Funke H. H.-W., et al., Experimental and numerical study of the micro mix combustion principle applied for hydrogen and hydrogen- rich syngas as fuel with increased energy density for industrial gas turbine. Applications Energy Procedia 61, pp. 1736 - 1739, 2014. Search in Google Scholar

19. BouvetN., et al., Characterization of syngas laminar flames using the Bunsen burner configuration. International Journal of Hydrogen Energy 36, pp. 992-1005, 2011.10.1016/j.ijhydene.2010.08.147Search in Google Scholar

20. Domachowski Z., Dzida M., An analysis of characteristics of ship gas turbine propulsion system (in the light of the requirements for ship operation in the Baltic Sea). Pol. Marit, [special issue], pp. 73-78, 2004.Search in Google Scholar

21. Khalil A. E. E., Gupta A. K., Swirling flow-field for colorless distributed combustion. Applied Energy 113, pp. 208-218,2014.10.1016/j.apenergy.2013.07.029Search in Google Scholar

22. Lilley D.G., Modeling of combustor swirl flows. Acta Astronautica 1(9-10), pp. 1129-1147,1974.Search in Google Scholar

23. Syred N., Beér J.M., Combustion in swirling flows: A review. Combustion and Flame 23(2), pp.143-201, 1974.10.1016/0010-2180(74)90057-1Search in Google Scholar

24. Osvaldo V-Z. M., Syred N., Agustín V-M., Daniel D. R-U., Flashback avoidance in swirling flow burners. Ingeniería, Investigacióny Tecnología 15(4), pp. 603-614,2014.10.1016/S1405-7743(14)70658-4Search in Google Scholar

25. Zaid A., FaragA.: Effect of secondary air configuration in gas turbine combustor firing natural gas. Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition IMECE2014, Montreal, Quebec, Canada, November 14-20, 2014.10.1115/IMECE2014-36255Search in Google Scholar

26. Beer J.M., and Chigier, N.A.: Combustion Aerodynamics, Applied Science Publishers, London, England, 1972.Search in Google Scholar

27. GAMBIT team: GAMBIT program user guide, September 2006.Search in Google Scholar

28. Knopp T., Eisfeld B., Calvo J. B., A new extension for k -ῼ turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow 30, pp. 54-65, 2009.10.1016/j.ijheatfluidflow.2008.09.009Search in Google Scholar

29. Cheng P., Two-dimensional radiating gas flow by a moment method. AIAA Journal 2, pp. 1662-1664, 1964.Search in Google Scholar

30. Siegel R., Howell J. R.: Thermal radiation heat transfer. Hemisphere, Washington, DC, USA, 1992.Search in Google Scholar

31. Ahmed A. S., Velocity measurements and turbulence statistics of a confined isothermal swirling flow. Experimental Thermal and Fluid Science 17, pp. 256 -264, 1998.10.1016/S0894-1777(97)10039-5Search in Google Scholar

32. AndreiniA., et al., CFD analysis of NOx emissions of a natural gas lean premixed burner for heavy duty gas turbine. Energy Procedia 81, pp. 967 - 976, 2015.10.1016/j.egypro.2015.12.155Search in Google Scholar

33. Ghenai C., Combustion of syngas fuel in gas turbine can combustor. Hindawi publishing corporation. advances in Mechanical Engineering, doi:10.1155/2010/342357, pp. 1-13, 2010.Search in Google Scholar

34. Whitty K. J., Zhang H. R., and Eddings E. G., Emissions from syngas combustion. Combust. Sci. and Tech. 180, pp. 1117-1136, 2008.Search in Google Scholar

35. Chacartegui R., et al., Analysis of main gaseous emissions of heavy duty gas turbines burning several syngas fuels. Fuel Processing Technology 92, pp. 213-220, 2011.10.1016/j.fuproc.2010.03.014Search in Google Scholar

36. WelayaY.M., Mosleh M., Ammar N.R., Thermodynamic Analysis of Combined Solid Fuel Cell with a Steam Turbine Power Plant for Marine Applications. Brodgradnja/ Shipbuilding 65(1), pp. 97-115, 2014.Search in Google Scholar

37. Welaya Y.M., Mosleh M., Ammar N.R., Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. Int. J. Naval Archit. Ocean Eng. 5 , pp. 404-413, 2013.10.2478/IJNAOE-2013-0151Search in Google Scholar

38. Mustafi N.N., Miraglia Y.C., Raine R.R., Bansal P.K., and Elder S.T., Sparkignition engine performance with ‘Powergas’ fuel (mixture of CO=H2): A comparison with gasoline and natural gas. Fuel 85(12-13), pp. 1605-1612, 2006.Search in Google Scholar

39. Ratafia-Brown, J.A., Manfredo L.M., Hoffman J.W., Ramezan M., and Steigel G.J.: An environmental assessment of IGCC power systems. Presented at the Nineteenth Annual Pittsburgh Coal Conference, Pittsburgh, PA, 23-27 September, 2002.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences