Open Access

Thermographic Method Based Accelerated Fatigue Limit Calculation for Steel X5CrNi18-10 Subjected to Rotating Bending

   | Dec 30, 2015

Cite

1. Kozak, J., Gorski, Z.: Fatigue strength determination of ship structural joints. Part I. Polish Maritime Research, No. 2(69), Vol. 18, 28-36 (2011).Search in Google Scholar

2. Szala, G.: Comments on linear summation hypothesis of fatigue failures. Polish Maritime Research, No. 3(83), Vol. 21, 77-85 (2014).Search in Google Scholar

3. Skibicki, D.: Experimental verification of fatigue loading nonproportionality model. Journal of Theoretical and Applied Mechanics, 45, 2, 337-348 (2007).Search in Google Scholar

4. Skibicki, D.: Multiaxial fatigue life and strength criteria for non-proportional loading. Materials Testing, 48, 3, 99-102 (2006).10.3139/120.100717Search in Google Scholar

5. Dixon, W.J.: The Up-and-Down Method for Small Samples. Journal of the American Statistical Association, 60, 312, 967-978 (1965).10.1080/01621459.1965.10480843Search in Google Scholar

6. Dixon, W.J., Mood, A.M.: A Method for Obtaining and Analyzing Sensitivity Data. Journal of the American Statistical Association, 43, 241, 109-126 (1948).10.1080/01621459.1948.10483254Search in Google Scholar

7. Collins, J.A.: Failure of materials in mechanical design - analysis, prediction, prevention. John Wiley & Sons, New York (1993).Search in Google Scholar

8. Radaj, D.: Design and analysis of fatigue resistant welded structures. Abington, Woodhead Publishing (1990).10.1533/9781845698751Search in Google Scholar

9. Szala, J.: Application of programmed fatigue tests to evaluating fatigue limit. Mechanika Teoretyczna i Stosowana, 3, 26, 523-539 (1988) - in Polish.Search in Google Scholar

10. Lipski, A.: Determination of Fatigue Limit by Locati Method using S-N Curve Determined by Means of Thermographic Method. Solid State Phenomena, 223, 362-373 (2014).10.4028/www.scientific.net/SSP.223.362Search in Google Scholar

11. Lipski, A.: Impact of the Strain Rate during Tension Test on 46Cr1 Steel Temperature Change. Key Engineering Materials, 598, 133-140 (2014).10.4028/www.scientific.net/KEM.598.133Search in Google Scholar

12. Lipski, A., Boroński, D.: Use of Thermography for the Analysis of Strength Properties of Mini-Specimens. Materials Science Forum, 726, 156-161 (2012).10.4028/www.scientific.net/MSF.726.156Search in Google Scholar

13. Lipski, A., Lis, Z.: Temperature Changes Induced by the Portevin-Le Chatelier (PLC) Effect during Tensile Test Based on the Example of CuZn37 Brass. Solid State Phenomena, 224, 238-243 (2014).10.4028/www.scientific.net/SSP.224.238Search in Google Scholar

14. Kaleta, J., Błotny, R., Harig, H.: Energy Stored In A Specimen Under Fatigue Limit Loading Conditions. Journal Of Testing And Evaluation, 19, 4, 326-333 (1991).Search in Google Scholar

15. Audenino, A.: Correlation between thermography and internal damping in metals. International Journal of Fatigue, 25, 4, 343-351 (2003).10.1016/S0142-1123(02)00137-8Search in Google Scholar

16. Doudard, C., Calloch, S., Hild, F., Roux, S.: Identification of heat source fields from infrared thermography: Determination of “self-heating” in a dual-phase steel by using a dog bone sample. Mechanics of Materials, 42, 1, 55-62 (2010).10.1016/j.mechmat.2009.09.005Search in Google Scholar

17. Lipski, A., Skibicki, D.: Variations of the Specimen Temperature Depending on the Pattern of the Multiaxial Load - Preliminary Research. Materials Science Forum, 726, 162-168 (2012).10.4028/www.scientific.net/MSF.726.162Search in Google Scholar

18. La Rosa, G., Risitano, A.: Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue. 22, 1, 65-73 (2000).Search in Google Scholar

19. Luong, M.P.: Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 158, 2-3, 363-376 (1995).Search in Google Scholar

20. Luong, M.P.: Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 28, 1, 155-163 (1998).10.1016/S0167-6636(97)00047-1Search in Google Scholar

21. Cura, F., Curti, G., Sesana, R.: A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 27, 4, 453-459 (2005).10.1016/j.ijfatigue.2003.12.009Search in Google Scholar

22. Galietti, U., Palumbo, D., De Finis, R., Ancona, F.: Fatigue limit evaluation of martensitic steels with thermal methods. The 12th International Conference of Quantitative Infrared Thermography, QIRT, Bordeaux (2014).Search in Google Scholar

23. Li, X.D., Zhang, H., Wu, D.L., Liu, X., Liu, J.Y.: Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress. International Journal of Fatigue, 36, 1, 18-23 (2012).10.1016/j.ijfatigue.2011.09.005Search in Google Scholar

24. Kordatos, E.Z., Dassios, K.G., Aggelis, D.G., Matikas, T.E.: Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission. Mechanics Research Communications, 54, 14-20 (2013). 10.1016/j.mechrescom.2013.09.005Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences