Open Access

Leachates of Thermally Modified Pine (Pinus sylvestris L.) Wood


Cite

1. Boonstra, M. J., Acker, J., Kegel, E., & Stevens, M. (2006). Optimisation of a two-stage heat treatment process: durability aspects. Wood Science and Technology, 41(1), 31–57. Retrieved August 15, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s00226-006-0087-4. DOI:10.1007/s00226-006-0087-4.10.1007/s00226-006-0087-4Search in Google Scholar

2. Brito, J.O., Silva, F. G., Leão, M. M., & Almeida, G. (2008). Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology, 99, 8545-8548. Retrieved May 27, 2015, from PubMed database on the World Wide Web: http://www.ncbi.nlm.nih.gov/pubmed/18586488. DOI: 10.1016/j.biortech.2008.03.069.10.1016/j.biortech.2008.03.06918586488Search in Google Scholar

3. Esteves, B., Marques, A. V., Domingos, I., & Pereira, H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptys globulus) wood. Wood Science and Technology, 41, 193-207. Retrieved August 15, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s00226-006-0099-0. DOI:10.1007/s00226-006-0099-0.10.1007/s00226-006-0099-0Search in Google Scholar

4. Esteves, B., & Pereira, H. (2008). Wood modification by heat treatment: a review. BioResources, 4(1), 370–404. Retrieved August 24, 2014, from BioResources database on the World Wide Web: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_1_%23%23%23%23_Esteves_P_Wood_Mod_Heat_Treatment. DOI:10.15376/biores.4.1.370-404.10.15376/biores.4.1.370-404Search in Google Scholar

5. European Commission. (2014, August). European Platform on Life Cycle Assessment (LCA). Retrieved August 24, 2014, from http://ec.europa.eu/environment/ipp/lca.htm.Search in Google Scholar

6. Ferreira, J., Esteves, B., Nunes, L. & Domingos, I. (2014). Life cycle assessment of thermally treated and untreated maritime pine boards: a Portuguese case study. In European Conference on Wood Modification, 10-12 March 2014. Lisbon, Portugal: Laboratório Nacional de Engenharia Civil.Search in Google Scholar

7. Finnish ThermoWood Association. (2008). Executive summary - Thermowood®: Life cycle assessment. Espoo: Publishing House Koivuniemi Ltd.Search in Google Scholar

8. Graf, N., Wagner, S., Begander, U., Trinkaus, P. & Boechzelt, H. (2005). Gaseous emissions from thermal wood modification as a source for fine chemicals recovery. Graz: Joanneum Research GmbH.Search in Google Scholar

9. International ThermoWood Association. (2003). Handbook. Helsinki, Finnland: Wood Focus Oy.Search in Google Scholar

10. Kamdem, D.P., Pizzi, A. & Triboulot, M.C. (2000). Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz als Roh- und Werkstoff, 58(4), 253–257. Retrieved August 24, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s001070050420. DOI:10.1007/s001070050420.10.1007/s001070050420Search in Google Scholar

11. Karlsson, O., Torniainen, P., Dagbro, O., Granlund, K. & Moren, T. (2012). Presence of water-soluble compounds in thermally modified wood: carbohydrates and furfurals. BioResources, 7(3), 3679–3689. Retrieved August 24, 2014, from BioResources database on the World Wide Web: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3679_Karlsson_TDGM_Water_Soluble_Cmpds_Thermal_Modified_Wood. DOI:10.15376/biores.7.3.3679-3689.Search in Google Scholar

12. Korkut, S., Akgül, M. & Dündar, T. (2008). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99(6), 1861–1868. Retrieved October 10, 2013, from PubMed database on the World Wide Web:http://www.ncbi.nlm.nih.gov/pubmed/17482811. DOI:10.1016/j.biortech.2007.03.038.10.1016/j.biortech.2007.03.03817482811Search in Google Scholar

13. LVS EN 84:2000. Wood preservatives - Accelerated ageing of treated wood prior to biological testing - Leaching procedure. Riga: Latvian Standard.Search in Google Scholar

14. LVS EN ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. Riga.Search in Google Scholar

15. Metsä-Kortelainen, S. (2011). Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure. Doctoral dissertation, Aalto university, Espoo, Finland. Retrieved May 26, 2015 from the World Wide Web: http://www.vtt.fi/inf/pdf/publications/2011/P771.pdf.Search in Google Scholar

16. Peters, J., Fischer, K., & Fischer, S. (2008). Characterization of emissions of thermally modified wood and their reduction by chemical treatment. BioResources. 3(2), 491-52. Retrieved August 26, 2014, from BioResources database on the World Wide Web: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_2_0491_Peters_FF_Emissions_Thermal_Wood. DOI:10.15376/biores.3.2.491-502.Search in Google Scholar

17. Srinivas, K. & Pandey, K. K. (2012). Photodegradation of thermally modified wood. Journal of Photochemistry and Photobiology B: Biology, 117, 140–145. Retrieved May 28, 2014, from PubMed database on the World Wide Web: http://www.ncbi.nlm.nih.gov/pubmed/23123593. DOI:10.1016/j.jphotobiol.2012.09.03.Search in Google Scholar

18. Vetter, L., Depraetere, G., Janssen, C., Stevens, M. & Van Acker, J. (2008). Methodology to assess both the efficacy and ecotoxicology of preservative-treated and modified wood. Annals of Forest Science, 65(5), 504–504. Retrieved August 24, 2014, from Springerlink database on the World Wide Web: http://link.springer.com. DOI:10.1051/forest:2008030.10.1051/forest:2008030Search in Google Scholar

eISSN:
2256-0939
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Ecology, Plant Science