Open Access

Conditions of synthesis and structure of metakaolin-based geopolymers: application as heavy metal cation sorbent


Cite

1. Davidovits, J. (1994). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. J. Mater. Educ. 16(2–3), 91–139.Search in Google Scholar

2. Yun-Ming, L., Cheng-Yong, H., Abdullah, M.M.A.B. & Hussin, K. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 83, 595–629. DOI: 10.1016/j.pmatsci.2016.08.002.10.1016/j.pmatsci.2016.08.002Open DOISearch in Google Scholar

3. Ilic, B.R., Mitroviv, A.A. & Milicic, L.R. (2010). Thermal treatment of kaolin clay to obtain metakaolin. Hem. Ind. 64 (4), 351–356. DOI: 10.2298/HEMIND100322014I.10.2298/HEMIND100322014Open DOISearch in Google Scholar

4. Liew, Y.M., Kamarudin, H., Mustafa Al Bakri, A.M., Luqman, M., Khairul Nizar, I., Ruzaidi, C.M. & Heah, C.Y. (2012). Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 30, 794–802. DOI: 10.1016/j.conbuildmat.2011.12.079.10.1016/j.conbuildmat.2011.12.079Open DOISearch in Google Scholar

5. San Cristóbal, A.G., Castelló, R., Martín Luengo, M.A. & Vizcayno, C. (2010). Zeolites prepared from calcined and mechanically modified kaolins: a comparative study. Appl. Clay Sci. 49(3), 239–246. DOI: 10.1016/j.clay.2010.05.012.10.1016/j.clay.2010.05.012Open DOISearch in Google Scholar

6. Xu, H. & van Deventer, J.S.J. (2002). Geopolymerization of multiple minerals. Miner. Eng. 15(12), 1131–1139. DOI: 10.1016/S0892-6875(02)00255-8.10.1016/S0892-6875(02)00255-8Open DOISearch in Google Scholar

7. Xu, H. & van Deventer, J.S.J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266. DOI: 10.1016/S0301-7516(99)00074-5.10.1016/S0301-7516(99)00074-5Open DOISearch in Google Scholar

8. Pacheco-Torgal, F., Castro-Gomes, J.P. & Jalali, S. (2008). Alkali-activated binders: a review. Part 2. About materials and binders manufacture. J. Constr. Build. Mater. 22(7), 1315–1322. DOI: 10.1016/j.conbuildmat.2007.03.019.10.1016/j.conbuildmat.2007.03.019Search in Google Scholar

9. Palomo, A., Grutzek, M.W. & Blanco-Varela, M.T. (1999). Alkali-activated fly ashes. A cement for the future. Cem. Concr. Res. 29(8), 1323–1329. DOI: 10.1016/S0008-8846(98)00243-9.10.1016/S0008-8846(98)00243-9Open DOISearch in Google Scholar

10. Alonso, S. & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator, concentration and solids ratio. Mater. Lett. 47(1–2), 55–62. DOI: 10.1016/S0167-577X(00)00212-3.10.1016/S0167-577X(00)00212-3Search in Google Scholar

11. Alonso, S. & Palomo, A. (2001). Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem. Concr. Res. 31(1), 25–30. DOI: 10.1016/S0008-8846(00)00435-X.10.1016/S0008-8846(00)00435-XOpen DOISearch in Google Scholar

12. Davidovits, J. (2015). Geopolymer Chemistry and Applications (4th ed.). Saint-Quentin, France: Institut GéopolymèreSearch in Google Scholar

13. Provis, J.L. & van Deventer, J.S.J. (2009). Geopolymers: Structure, processing, properties and industrial applications (1st ed.). Abingdon, UK: Woodhead Publishing LimitedSearch in Google Scholar

14. Fernandez-Jimenez, A. & Palomo, A. (2005). Chemical durability of geopolymers. In Provis, J.L. & van Deventer (Eds.), Geopolymers: Structure, processing, properties and industrial applications (pp. 167–193). Abingdon, UK: Woodhead Publishing Limited.Search in Google Scholar

15. Zheng, L., Wang, W. & Shi, Y. (2010). The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671. DOI: 10.1016/j.chemosphere.2010.02.018.10.1016/j.chemosphere.2010.02.01820304461Open DOISearch in Google Scholar

16. Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y. & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244–251. DOI: 10.1016/j.jhazmat.2014.09.038.10.1016/j.jhazmat.2014.09.03825282176Open DOISearch in Google Scholar

17. Li, L., Wang, S. & Zhu, Z. (2006). Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. J. Colloid. Interf. Sci. 300(1), 52–59. DOI: 10.1016/j.jcis.2006.03.06210.1016/j.jcis.2006.03.06216626729Open DOISearch in Google Scholar

18. Zhang, J., Provis, J.L., Feng, D. & Van Deventer, J.S.J. (2008a). Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598. DOI: 10.1016/j.jhazmat.2008.01.053.10.1016/j.jhazmat.2008.01.05318313213Open DOISearch in Google Scholar

19. Yousef, R.I., El-Eswed, B., Alshaaer, M., Khalili, F. & Khoury, H. (2009). The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. J. Hazard. Mater. 165(1–3), 379–387. DOI: 10.1016/j.jhazmat.2008.10.004.10.1016/j.jhazmat.2008.10.00419036505Open DOISearch in Google Scholar

20. López, F.J., Sugita, S., Tagaya, M. & Kobayashi, T. (2014). Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation. J. Mater. Sci. Chem. Eng. 2, 16–27. DOI: 10.4236/msce.2014.27002.10.4236/msce.2014.27002Open DOISearch in Google Scholar

21. De Silva, P. & Sagoe-Crenstil, K. (2008). The effect of Al2O3 and SiO2 on setting and hardening of Na2O-Al2O3-SiO2-H2O geopolymer system. J. Aust. Ceram. Soc. 44(1), 39–46.Search in Google Scholar

22. Davidovits, J. (1982). U.S. Patent No. 4,349,386. United States: U.S. Patent and Trademark Office.Search in Google Scholar

23. Kenne Diffo, B.B., Elimbi, A. Cyr, M., Dika Manga, J. & Tchakoute Kouamo, H. (2015). Effect of the rate of calcination of kaolin on the properties of metakaolin-based geo-polymers. J. Asian Ceram. Soc. 3(1), 130–138. DOI: 10.1016/j.jascer.2014.12.003.10.1016/j.jascer.2014.12.003Open DOISearch in Google Scholar

24. Król, M., Minkiewicz, J. & Mozgawa, W. (2016). IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 1126, 200–206. DOI: 10.1016/j.molstruc.2016.02.027.10.1016/j.molstruc.2016.02.027Open DOISearch in Google Scholar

25. Zuhua, Z., Xiao, Y., Huajun, Z. & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 43(2), 218–223. DOI: 10.1016/j.clay.2008.09.003.10.1016/j.clay.2008.09.003Open DOISearch in Google Scholar

26. Mozgawa, W. (2007). Vibrational Spectroscopy of Zeolites. Habilitation dissertation, AGH University of Science and Technology, Krakow, Poland.Search in Google Scholar

27. Rattanasak, U. & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078. DOI: 10.1016/j.mineng.2009.03.022.10.1016/j.mineng.2009.03.022Open DOISearch in Google Scholar

28. Heah, C.Y., Kamarudin, H., Mustafa Al Bakri, A.M., Bnhussain, M., Luqman, M. & Khairul Nizar, I. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build Mater. 35, 912–922. DOI: 10.1016/j.conbuildmat.2012.04.102.10.1016/j.conbuildmat.2012.04.102Open DOISearch in Google Scholar

29. Andini, S., Cioffi, R., Colangelo, F., Grieco, T., Montagnaro, F. & Santoro, L. (2008). Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manage. 28(2), 416–423. DOI: 10.1016/j.wasman.2007.02.001.10.1016/j.wasman.2007.02.00117382528Open DOISearch in Google Scholar

30. Gougazeh, M. & Buhl, J.C. (2014). Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. Appl. Clay Sci. 15, 35–42. DOI: 10.1016/j.jaubas.2013.03.007.10.1016/j.jaubas.2013.03.007Open DOISearch in Google Scholar

31. Flaningen, E.M., Khatami, H. & Szymański, H.A. (1974). Infrared structural studies of zeolite frameworks. Adv. Chem. Ser. 101, 201–229. DOI: 10.1021/ba-1971-0101.ch016.10.1021/ba-1971-0101.ch016Open DOISearch in Google Scholar

32. Mikuła, A., Król, M. & Koleżyński, A. (2015). The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim. Acta A. 144, 273–280. DOI: 10.1016/j.saa.2015.02.073.10.1016/j.saa.2015.02.07325769123Open DOISearch in Google Scholar

33. Cundy, C.S. & Cox, P.A. (2005). The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 82(1–2), 1–78. DOI: 10.1016/j.micromeso.2005.02.016.10.1016/j.micromeso.2005.02.016Open DOISearch in Google Scholar

34. Tang, Q., Ge, Y.Y., Wang, K.T., He, Y. & Cui, X.M. (2015). Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent. Mater. Design. 88, 1244–1249. DOI: 10.1016/j.matdes.2015.09.126.10.1016/j.matdes.2015.09.126Open DOISearch in Google Scholar

35. Mozgawa, W., Król, M. & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. J. Mol. Struct. 924–926, 427–433. DOI: 10.1016/j.molstruc.2008.12.028.10.1016/j.molstruc.2008.12.028Open DOISearch in Google Scholar

36. Góra-Marek, K. & Datka, J. (2006). IR studies of OH groups in mesoporous aluminosilicates. Appl. Catal. A. 302 (1), 104–109. DOI: 10.1016/j.apcata.2005.12.027.10.1016/j.apcata.2005.12.027Open DOISearch in Google Scholar

37. Król, M., Mozgawa, W., Barczyk, K., Bajda, T. & Kozanecki, M. (2013). Changes in the vibrational spectra of zeolites due to sorption of heavy metal cations. J. Appl. Spectrosc. 80 (5), 644–650. DOI: 10.1007/s10812-013-9821-5.10.1007/s10812-013-9821-5Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering