Cite

1. Nahar, G., Mote, D. & Dupont, V. (2017). Hydrogen production from reforming of biogas Review of technological advances and an Indian perspective. Renew. Sust. Energ. Rev. 76, 1032–1052. DOI: 10.1016/j.rser.2017.02.031.10.1016/j.rser.2017.02.031Open DOISearch in Google Scholar

2. Molino, A., Chianese, S. & Musmarra, D. (2016). Biomass gasification technology The state of the art overview. J. Energy. Chem. 25, 10–25. DOI: 10.1016/j.jechem.2015.11.005.10.1016/j.jechem.2015.11.005Search in Google Scholar

3. Hossain, M.A., Jewaratnam, J. & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process – A review. Int. J. Hydrogen. Energ. 41, 16637–6655. DOI: 10.1016/j.ijhydene.2016.07.104.10.1016/j.ijhydene.2016.07.104Open DOISearch in Google Scholar

4. Chan, F.L. & Tanksale, A. (2014). Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sust. Energ. Rev. 38, 428–438. DOI: 10.1016/j.rser.2014.06.011.10.1016/j.rser.2014.06.011Open DOISearch in Google Scholar

5. Anis, S. & Zainal, Z.A. (2011). Tar reduction in biomass producer gas via mechanical. catalytic and thermal methods – A review. Renew. Sust. Energ. Rev. 15, 2355–2377. DOI: 10.1016/j.rser.2011.02.018.10.1016/j.rser.2011.02.018Open DOISearch in Google Scholar

6. Devi, L., Ptasinski, K.J. & Janssen, F.J.J.G. (2005). Decomposition of naphthalene as a biomass tar over pre-treated olivine: Effect of gas composition, kinetic approach, and reaction scheme. Ind. Eng. Chem. Res. 44, 9096–9104. DOI: 10.1021/ie050801g.10.1021/ie050801gOpen DOISearch in Google Scholar

7. Zhao, B., Zhang, X., Chen, L., Qu, R., Meng, G., Yi, X. & Sun, L. (2010) Steam reforming of toluene as model compound of biomass pyrolysis tar for hydrogen. Biomass Bioenerg. 34, 140–144. DOI: 10.1016/j.biombioe.2009.10.011.10.1016/j.biombioe.2009.10.011Open DOISearch in Google Scholar

8. Noichi, H., Uddin, A. & Sasaoka, E. (2010). Steam reforming of naphthalene as model biomass tar over iron–aluminum and iron–zirconium oxide catalyst catalysts, Fuel Process. Technol. 91, 1609–1616. DOI: 10.1016/j.fuproc.2010.06.009.10.1016/j.fuproc.2010.06.009Search in Google Scholar

9. Kong, M., Fei, J.H., Wang, S.A., Lu, W. & Zheng, X.M. (2011). Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification, Bioresour. Technol. 102, 2004–2008. DOI: 10.1016/j.biortech.2010.09.054.10.1016/j.biortech.2010.09.05420943380Open DOISearch in Google Scholar

10. Zhang, R.Q., Wang, H.J. & Hou, X.X. (2014). Catalytic reforming of toluene as tar model compound: effect of Ce and Ce–Mg promoter using Ni/olivine catalyst. Chemosphere. 97, 40–46. DOI: 10.1016/j.chemosphere.2013.10.087.10.1016/j.chemosphere.2013.10.08724275153Search in Google Scholar

11. Świerczyński, D., Libs, S., Courson, C. & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B, 74, 211–222. DOI: 10.1016/j.apcatb.2007.01.017.10.1016/j.apcatb.2007.01.017Open DOISearch in Google Scholar

12. Ni, M., Leung, D.Y.C., Leung, M.K.H. & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process Technol. 87, 461–472. DOI: 10.1016/j.fuproc.2005.11.003.10.1016/j.fuproc.2005.11.003Open DOISearch in Google Scholar

13. Fagbemi, L., Khezami, L. & Capart, R. (2001). Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl. Energy. 69, 293–306. DOI: 10.1016/S0306-2619(01)00013-7.10.1016/S0306-2619(01)00013-7Open DOISearch in Google Scholar

14. Pathak, B.S., Kapatel, D.V., Bhoi, P.R., Sharma, A.M. & Vyas, D.K. (2007). Design and development of sand bed filter for upgrading producer gas to IC engine quality fuel. Int. Energy J. 8, 15–20. DOI: 10.1063/1.4791590.10.1063/1.4791590Open DOISearch in Google Scholar

15. Bhave, A.G., Vyas, D.K. & Patel, J.B. (2008). Wet packed bed scrubber-based producer gas cooling-cleaning system. Renew. Energ. 33, 1716–1720. DOI: 10.1016/j.renene.2007.08.014.10.1016/j.renene.2007.08.014Open DOISearch in Google Scholar

16. Shen, Y. & Yoshikawa, K. (2013). Recent progresses in catalytic tar elimination during biomass gasification. Renew. Sust. Energ. Rev. 21, 371–392. DOI: 10.1016/j.rser.2012.12.062.10.1016/j.rser.2012.12.062Open DOISearch in Google Scholar

17. Park, J. Lee, Y. & Ryu, C. (2016). Reduction of primary tar vapor from biomass by hot char particles in fixed bed gasification. Biomass. Bioenerg. 90, 114–121. DOI: 10.1016/j.biombioe.2016.04.001.10.1016/j.biombioe.2016.04.001Open DOISearch in Google Scholar

18. Tuomi, S. Kurkela, E. Simell, P. & Reinikainen, M. (2015). Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel 139, 220–231. DOI: 10.1016/j.fuel.2014.08.051.10.1016/j.fuel.2014.08.051Open DOISearch in Google Scholar

19. Liu, X. Yang, X. Liu, C. Chen, P. Yue, X. & Zhang, S. (2016). Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J. Taiwan. Inst. Chem. E. 65, 233–241. DOI: 10.1016/j.jtice.2016.05.006.10.1016/j.jtice.2016.05.006Open DOISearch in Google Scholar

20. Di Felice, L., Courson, C., Foscolo, P.U. & Kiennemann, A. (2011). Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int. J. Hydrogen. Energ. 36, 5296–5310. DOI: 10.1016/j.ijhydene.2011.02.008.10.1016/j.ijhydene.2011.02.008Open DOISearch in Google Scholar

21. Łamacz, A., Krzton, A. & Djega-Mariadassou, G. (2011). Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts. Catal. Today 17, 347–351. DOI: 10.1016/j.cattod.2010.11.067.10.1016/j.cattod.2010.11.067Open DOISearch in Google Scholar

22. Di Carlo, D.A., Borello, D., Sisinni, M., Savuto, E., Venturini, P., Bocci, E. & Kuramoto, K. (2015). Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst. Int. J. Hydrogen. Energ. 40, 9088–9095. DOI: 10.1016/j.ijhydene.2015.05.128.10.1016/j.ijhydene.2015.05.128Open DOISearch in Google Scholar

23. Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T. & Tsubaki, N. (2013). Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53–57. DOI: 10.1016/j.fuel.2010.05.044.10.1016/j.fuel.2010.05.044Open DOISearch in Google Scholar

24. Liu, S., Mei, D., Wang, L. & Tu, X. (2017). Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chem. Eng. J. 307, 793–802. DOI: 10.1016/j.cej.2016.08.005.10.1016/j.cej.2016.08.005Open DOISearch in Google Scholar

25. Nadziakiewicz, J., Pikoń, K. & Stelmach, S. (2012). Oczyszczanie gazu syntezowego z zanieczyszczeń węglowodorowych w reaktorze plazmowo-katalitycznym. Przem. Chem. 91, 1270–1274.Search in Google Scholar

26. Młotek, M., Reda, E., Jóźwik, P., Krawczyk, K. & Bojar, Z. (2015). Plasma-catalytic decomposition of cyclohexane in gliding discharge reactor. Appl. Catal. A-Gen. 505, 150–158. DOI: 10.1016/j.apcata.2015.07.033.10.1016/j.apcata.2015.07.033Open DOISearch in Google Scholar

27. Młotek, M., Ulejczyk, B., Walerczak, I., Woroszył, J. & Krawczyk, K. (2016). The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry Hakone XV, 11–16 September 2016 (pp. 245–248). Brno, Czech Republic.Search in Google Scholar

28. Młotek, M., Ulejczyk, B., Woroszył, J. & Krawczyk, K. (2017). 21st Symposium on Applications of Plasma Processes. 13–18 January 2017 (pp. 236–240). Štrbské Pleso. Slovakia.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering