Open Access

Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions


Cite

1. Basak, B., Bhunia, B. & Dey, A. (2014). Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol bio-degradation. Int. Biodeterior. Biodegrad. 93, 107–117. DOI: 10.1016/j.ibiod.2014.05.012.10.1016/j.ibiod.2014.05.012Open DOISearch in Google Scholar

2. Gupta, A. & Balomajumder, C. (2015). Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J. Water. Proc. Eng. 6, 1–10. DOI: 10.1016/j.jwpe.2015.02.004.10.1016/j.jwpe.2015.02.004Open DOISearch in Google Scholar

3. Isaac, W., Mwangi, J., Ngila, C., Ndung’u, P. & Msagati, T.A.M. (2014). Removal of phenolics from aqueous media using quaternised maize Tassels. J. Environ. Manag. 134, 70–79. DOI: 10.1016/j.jenvman.2013.12.03110.1016/j.jenvman.2013.12.03124463851Open DOISearch in Google Scholar

4. Osegueda, O., Dafinov, A., Llorca, J., Medina, F. & Sueiras, J. (2015). Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem. Eng. J. 262, 344–355. DOI: 10.1016/j.cej.2014.09.06410.1016/j.cej.2014.09.064Open DOISearch in Google Scholar

5. Zagklis. D.P., Vavouraki, A.I., Kornaros, M.E. & Paraskeva, C.A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard Mater. 285, 69–76. DOI: 10.1016/j.jhazmat.2014.11.038.10.1016/j.jhazmat.2014.11.03825497019Open DOISearch in Google Scholar

6. Turkia, A., Guillardb, C., Dappozzeb, F., Ksibia, F., Berhaultb, G. & Kochkara, H. (2015). Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal. B. 163, 404–414. DOI: 10.1016/j.apcatb.2014.08.010.10.1016/j.apcatb.2014.08.010Open DOISearch in Google Scholar

7. Yu, L., Chen, J., Liang, Z., Xu, W., Chen, L. & Ye, D. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst Sep. Purif. Technol. 171, 80–87. DOI: 10.1016/j.seppur.2016.07.020.10.1016/j.seppur.2016.07.020Open DOISearch in Google Scholar

8. Kamel, S., Abou-Yousef, H., Yousef, M. & El-Sakhawy, M. (2012). Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohydr. Polym. 88(1), 250–256. DOI: 10.1016/j.carbpol.2011.11.090.10.1016/j.carbpol.2011.11.090Search in Google Scholar

9. Álvarez-Torrellas, S., Martin-Martinez, M., Gomes, H.T., Ovejero, G. & Garcia, J. (2017). Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Appl. Surf. Sci. 414, 424–434. DOI: 10.1016/j.apsusc.2017.04.054.10.1016/j.apsusc.2017.04.054Open DOISearch in Google Scholar

10. Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X. & Ayoko, G.A. (2016). Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: A comparative study of single and multiple solute. Colloid Surf. A. 497, 63–71. DOI: 10.1016/j.colsurfa.2016.02.032.10.1016/j.colsurfa.2016.02.032Search in Google Scholar

11. Cheng, W.P., Gao, W., Cui, X., Ma, J.H. & Li, R.F. (2016). Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. E. 62, 192–198. DOI: 10.1016/j.jtice.2016.02.004.10.1016/j.jtice.2016.02.004Open DOISearch in Google Scholar

12. Hasan, Z. & Jhung S.H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mat. 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.10.1016/j.jhazmat.2014.09.046Open DOISearch in Google Scholar

13. Mangrulkar, P.A., Kamble, S.P., Meshram, J. & Rayalu, S.S. (2008). Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater. 160(2–3), 414–421. DOI: 10.1016/j.jhazmat.2008.03.01310.1016/j.jhazmat.2008.03.013Open DOISearch in Google Scholar

14. Al-Hamdi, A.M., Sillanpää, M., Bora, T. & Dutta J. (2016). Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles. Appl. Surf. Sci. 370, 229–236. DOI: 10.1016/j.apsusc.2016.02.123.10.1016/j.apsusc.2016.02.123Open DOISearch in Google Scholar

15. Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L. Vaghetti, J.C.P. & Dias, S.L.P. (2016). Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067–1080. DOI: 10.1016/j.molliq.2016.09.032.10.1016/j.molliq.2016.09.032Open DOISearch in Google Scholar

16. Zhang, D., Huo, P. & Liu, W. Behavior of phenol adsorption on thermal modified activated carbon. (2016). Chin. J. Chem. Eng. 24(4), 446–452. DOI: 10.1016/j.cjche.2015.11.022.10.1016/j.cjche.2015.11.022Open DOISearch in Google Scholar

17. Nakagawa, Y., Molina-Sabio, M. & Rodríguez-Reinoso, F. (2007). Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Micropor. Mesopor. Mater. 103(1–3), 29–34. DOI: 10.1016/j.micromeso.2007.01.029.10.1016/j.micromeso.2007.01.029Open DOISearch in Google Scholar

18. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing. K.W.S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1070. DOI: 10.1515/pac-2014-1117.10.1515/pac-2014-1117Open DOISearch in Google Scholar

19. López, M.V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marina, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8), 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.10.1016/S0008-6223(98)00317-0Search in Google Scholar

20. Giraldo, L. & Moreno, J.C. (2000) Determination of the Immersion Enthalpy of activated carbon by Microcalorimetry of the Heat Conduction. Instrum. Sci. Technol. 28(2), 171–178. DOI: 10.1081/CI-100100970.10.1081/CI-100100970Open DOISearch in Google Scholar

21. Neimark, A.V., Lin, Y., Ravikovitch, P.I. & Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7), 1617–1628. DOI: 10.1016/j.carbon.2009.01.050.10.1016/j.carbon.2009.01.050Open DOISearch in Google Scholar

22. Silvestre-Albero, J., Gómez, C., Sepúlveda-Escribano, A. & Rodríguez-Reinoso, F. (2001). Characterization of microporous solids by Inmersion calorimetry. Colloid Surf. A. 187–188, 151–165. DOI: 10.1016/S0927-7757(01)00620-3.10.1016/S0927-7757(01)00620-3Open DOISearch in Google Scholar

23. Stoeckli, F. & Centeno, T.A. (1997). On the characterization of microporous carbons by inmersion calorimetry alone. Carbon, 35(8), 1097–1100. DOI: 10.1016/S0008-6223(97)00067-5.10.1016/S0008-6223(97)00067-5Search in Google Scholar

24. Denoyel, R., Fernandez-Colinas, J., Grillet, Y. & Rouquerol, J. (1993). Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9(2), 515–518. DOI: 10.1021/la00026a025.10.1021/la00026a025Open DOISearch in Google Scholar

25. Navarrete, L., Giraldo, L. & Moreno, J.C. (2006). Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol. Rev Colomb Quím. 35(2), 215–224. DOI: 101007/s10973-006-7524-3.Search in Google Scholar

26. Moreno-Castilla, C (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83–94. DOI: 10.1016/j.carbon.2003.09.022.10.1016/j.carbon.2003.09.022Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering