Open Access

Ionic [Ru] complex with recyclability by electro-adsorption for efficient catalytic transfer hydrogenation of aryl ketones


Cite

1. Chen, F., Wang, T. & Jiao, N. (2014). Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613−8661. DOI: 10.1021/cr400628s.10.1021/cr400628sOpen DOISearch in Google Scholar

2. D’yakonov, V.A., Trapeznikova, O.A., de Meijere, A. & Dzhemilev, U.M.(2014). Metal complex catalysis in the synthesis of spirocarbocycles. Chem. Rev. 114, 5775−5814. DOI: 10.1021/cr400291c.10.1021/cr400291cOpen DOISearch in Google Scholar

3. Margalef, J., Pàmies, O. & Diéguez, M. (2016). Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. Tetrahedron Lett. 57, 1301–1308. DOI: 10.1016/j.tetlet.2016.02.022.10.1016/j.tetlet.2016.02.022Open DOISearch in Google Scholar

4. Zhang, G.Q., Yin, Z.W. & Tan, J.W. (2016). Cobalt(II)-catalysed transfer hydrogenation of olefins. RSC Adv. 6, 22419–22423. DOI: 10.1039/C6RA02021F.10.1039/602021Open DOISearch in Google Scholar

5. Ito, J. & Nishiyama, H. (2014). Recent topics of transfer hydrogenation. Tetrahedron Lett. 55, 3133–3146. DOI: 10.1016/j.tetlet.2014.03.140.10.1016/j.tetlet.2014.03.140Open DOISearch in Google Scholar

6. Castellanos-Blanco, N., Arévalo, A. & García, J.J. (2016). Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and ahydrogen donor. Dalton Trans. 45, 13604–13614. DOI: 10.1039/C6DT02725C.10.1039/C6DT02725Open DOISearch in Google Scholar

7. Thangavel, S., Boopathi, S., Mahadevaiah, N., Kolandaivel, P., Pansuriya, P.B. & Friedrich, H.B. (2016). Catalytic oxidation of primary aromatic alcohols using half sandwichIr(III), Rh(III) and Ru(II) complexes: A practical and theoretical study. J. Mol. Catal. A: Chem. 423, 160–171. DOI: 10.1016/j.molcata.2016.06.017.10.1016/j.molcata.2016.06.017Open DOISearch in Google Scholar

8. Saadati, F., Khani, N., Rahmani, M. & Piri, F. (2016). Preparation and characterization of nanosized copper (II) oxide embedded in hyper-cross-linked polystyrene: Highly efficient catalyst for aqueous-phase oxidation of aldehydes to carboxylic acids. Catal. Commun. 79, 26–30. DOI: 10.1016/j.catcom.2015.12.016.10.1016/j.catcom.2015.12.016Search in Google Scholar

9. Ruiz, S., Villuendas, P. & Urriolabeitia, E.P. (2016). Rucatalysed C–H functionalisations as a tool for selective organic synthesis. Tetrahedron Lett. 57, 3413–3432. DOI: 10.1016/j.tetlet.2016.06.117.10.1016/j.tetlet.2016.06.117Open DOISearch in Google Scholar

10. Pappas, I. & Chirik, P.J. (2016). Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. J. Am. Chem. Soc. 138, 13379–13389. DOI: 10.1021/jacs.6b08009.10.1021/jacs.6b08009Search in Google Scholar

11. Schlogl, R. (2015). Heterogeneous catalysis [J]. Angew. Chem. Int. Ed. 54, 3465–3520. DOI: 10.1002/anie.201410738.10.1002/anie.201410738Open DOISearch in Google Scholar

12. Nishimura, S. & Ebitani, K. (2016). Recent advances in heterogeneous catalysis with controlled nanostructured precious monometals. Chem. Cat. Chem. 8, 2303–2316. DOI: 10.1002/cctc.201600309.10.1002/cctc.201600309Search in Google Scholar

13. Corma, A., García, H. & Xamena, F.X.L. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655. DOI: 10.1021/cr9003924.10.1021/cr9003924Open DOISearch in Google Scholar

14. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M. & Basset, J.M. (2011). Magnetically recoverable nano-catalysts. Chem.Rev. 111, 3036–3075. DOI: 10.1021/cr100230z.10.1021/cr100230zOpen DOISearch in Google Scholar

15. Fernandez, F.E., Puerta, M.C. & Valerga, P. (2011). Half-sandwich Ruthenium(II) picolyl-NHC complexes: synthesis, characterization, and catalytic activity in transfer hydrogenation reactions. Organometallics 30, 5793–5802. DOI: 10.1021/om200665f.10.1021/om200665fOpen DOISearch in Google Scholar

16. Pan, S.G., Matsuo, Y., Endo, K. & Shibata, T. (2012). Cationic iridium-catalyzed enantioselective activation of secondary sp3 C-H bondadjacent to nitrogen atom. Tetrahedron 68, 9009–9015. DOI: 10.1016/j.tet.2012.08.071.10.1016/j.tet.2012.08.071Open DOISearch in Google Scholar

17. Verendel, J.J., Pàmies, O., Diéguez, M. & Andersson, P.G. (2014). Asymmetric hydrogenation of olefins using chiral crabtree-typecatalysts: scope and limitations. Chem. Rev. 114, 2130−2169. DOI: 10.1021/cr400037u.10.1021/cr400037uOpen DOISearch in Google Scholar

18. Perez, M., Elangovan, S., Sannenberg, A., Junge, K. & Beller, M. (2016). Molecularly defined manganese pincer complexes for selective transfer hydrogenation of ketones. Chem. Sus. Chem. 9, 1–5. DOI: 10.1002/cssc.201601057.10.1002/cssc.201601057Open DOISearch in Google Scholar

19. Kanchanadevi, A., Ramesh, R. & Semeril, D. (2016). Efficient and recyclable Ru(II) arene thioamide catalysts for transfer hydrogenation of ketones: Influence of substituent on catalytic outcome. J. Organomet. Chem. 808, 68–77. DOI: 10.1016/j.jorganchem.2016.02.016.10.1016/j.jorganchem.2016.02.016Open DOISearch in Google Scholar

20. Hodson, E. & Simpson, S.J. (2004). Synthesis and characterisation of [(η6-cymene)Ru(L)X2] compounds:single crystal X-ray structure of[(η6-cymene)Ru(P{OPh}3)Cl2] at 203 K. Polyhedron 23, 2695–2707. DOI: 10.1016/J.POLY.2004.06.016.10.1016/j.poly.2004.06.016Open DOISearch in Google Scholar

21. Hanif, M., Nazarov, A.A. & Hartinger, C.G. (2012). Synthesis of [RuII6-p-cymene)(PPh3)(L)Cl]PF6 complexes with carbohydrate-derived phosphites, imidazole or indazole co-ligands. Inorg. Chim. Acta 380, 211–215. DOI:10.1016/j.ica.2011.10.007.10.1016/j.ica.2011.10.007Open DOISearch in Google Scholar

22. Hu, C.Z., Liu, F.Y., Lan, H.C. & Liu, H.J. (2015). Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water. J. Coll. Inter. Sci. 446, 359–365. DOI: 10.1016/J.JCIS.2014.12.051.10.1016/j.jcis.2014.12.051Open DOISearch in Google Scholar

23. Amin. A.S. (2002). Simple and selective spectrophotometric determination ofruthenium after solid phase extraction with somequinoxaline dyes into microcrystalline p-dichlorobenzene. Spectrochim. Acta Part. A. 58, 1831–1837. DOI: 10.1016/S1386-1425(01)00681-3.10.1016/S1386-1425(01)00681-3Open DOISearch in Google Scholar

24. Chaplin, A.B., Fellay, C., Laurenczy, G. & Dyson, P.J. (2007). Mechanistic Studies on the Formation of η2-Diphosphine(η6-p-cymene)ruthenium(II) Compounds. Organometallics 26, 586–593. DOI: 10.1021/om060752n.10.1021/om060752nOpen DOISearch in Google Scholar

25. Gichumbi, J.M., Friedrich, H.B. & Omondi, B. (2016). Synthesis and characterization of half-sandwich ruthenium complexes with N-alkyl pyridyl-imine ligands and their application in transfer hydrogenation of ketones. Transit. Met. Chem. 41, 867–877. DOI: 10.1007/s11243-016-0089-5.10.1007/s11243-016-0089-5Open DOISearch in Google Scholar

26. Lin, T.H., Das, K., Datta, A., Leu, W.J., Hsiao, H.C., Lin, C.H., Guh, J.H., Huang, J.H. (2016). Synthesis and characterization of ruthenium compounds incorporating keto-amine ligands. The applications of catalytic transfer hydrogenation and cancer cell inhibition. J. Organomet. Chem. 807, 22–28. DOI: 10.1016/j.jorganchem.2016.01.029.10.1016/j.jorganchem.2016.01.029Open DOISearch in Google Scholar

27. Chai, H.N., Liu, T.T., Wang, Q.F. & Yu, Z.K. (2015). Substituent effect on the catalytic activity of Ruthenium(II) complexes bearing a pyridyl-supported pyrazolyl-imidazolyl ligandfor transfer hydrogenation of ketones. Organometallics, 34, 5278−5284. DOI: 10.1021/acs.organomet.5b00727.10.1021/acs.organomet.5b00727Open DOISearch in Google Scholar

28. Mai, V.H. & Nikonov, G.I. (2016). Transfer Hydrogenation of Nitriles, Olefins, and N-Heterocycles Catalyzed by an N-Heterocyclic Carbene-Supported Half-Sandwich Complex of Ruthenium. Organometallics 35, 943−949. DOI: 10.1021/acs.organomet.5b00967.10.1021/acs.organomet.5b00967Open DOISearch in Google Scholar

29. Yamamura, T., Nakane, S., Nomura, Y., Tanaka, S. & Kitamura, M. (2016). Development of an axially chiral sp3P/sp3NH/sp2N-combined lineartridentate liganddfac-selective formation of Ru(II) complexes and application to ketone hydrogenation. Tetrahedron 72, 3781–3789. DOI: 10.1016/j.tet.2016.02.007.10.1016/j.tet.2016.02.007Open DOISearch in Google Scholar

30. Paul, B., Chakrabarti & Kundu, K.S. (2106). Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complexfor transfer hydrogenation of ketones and nitriles:impact of the number of 2-hydroxypyridinefragments. Dalton Trans. 45, 11162–11171. DOI: 10.1039/C6DT01961G.10.1039/C6DT01961Open DOISearch in Google Scholar

31. Rath, R.K., Nethaji, M. & Chakravarthy, A.R. (2001). Transfer hydrogenation of acetophenone promoted by (arene) ruthenium(II) reduced Schiff base complexes: an X-ray structure of [(η6-p-cymene)RuCl(OC6H4-2-CH2NHC6H4-p-Me)]. Polyhedron 20, 2735–2739. DOI: 10.1016/S0277-5387(01)00894-4.10.1016/S0277-5387(01)00894-4Open DOISearch in Google Scholar

32. Samec, J.S.M., Backvall, J.E., Andersson, P.G. & Brandt, P. (2006). Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem. Soc. Rev. 35, 237–248. DOI: 10.1039/B515269K.10.1039/B515269Open DOISearch in Google Scholar

33. Wang, G., Qian, B.Q., Dong, Q., Yang, J.Y., Zhao, Z.B. & Qiu, J.S. (2013). Highly mesoporous activated carbon electrode for capacitive deionization. Sep. Purif. Technol. 103, 216–221. DOI:10.1016/j.seppur.2012.10.041.10.1016/j.seppur.2012.10.041Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering