Cite

1. Gueye, M.Y.R., Kafack, F.T. & Blin, J. (2014). High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2(1), 273–281. DOI : 10.1016/j.jece.2013.12.014.10.1016/j.jece.2013.12.014Open DOISearch in Google Scholar

2. Sreenivas, K.M., Gokhale, M.B.I. & Lele, S.S. (2014). Reutilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. J. Environ. Chem. Eng. 2(1), 455–462. DOI: 10.1016/j.jece.2014.01.017.10.1016/j.jece.2014.01.017Open DOISearch in Google Scholar

3. Nosuhi, M. & Nezamzadeh-Ejhieh, A. (2017). High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). J. Electro. Acta, 223, 47–62. DOI: 10.1016/j.electacta.2016.12.011.10.1016/j.electacta.2016.12.011Open DOISearch in Google Scholar

4. Darvishi Cheshmeh Soltani, R.J., Safari, S. & Rajaei, M.M.S. (2016). Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. J. Environ. Manage 179, 47–57. DOI: 10.1016/j.jenvman.2016.05.001.10.1016/j.jenvman.2016.05.00127173890Open DOISearch in Google Scholar

5. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. J. Bioresour. Technol. 98(12), 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.10.1016/j.biortech.2005.12.00616427277Open DOISearch in Google Scholar

6. Jorfi, S., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J. Environ. Manage. 187, 111–121. DOI: 10.1016/j.jenvman.2016.11.042.10.1016/j.jenvman.2016.11.04227888712Open DOISearch in Google Scholar

7. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. J. Ultra. Sono. Chem. 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.10.1016/j.ultsonch.2015.07.00226384885Open DOISearch in Google Scholar

8. Ahmadi, M., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: 10.1016/j.jenvman.2016.09.088.10.1016/j.jenvman.2016.09.08827852522Search in Google Scholar

9. Rajic, N., Jovanovic, S.M., Logar, N.Z., Mazaj, M. & Kaucic, V. (2010). Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. J. Appl. Surf. Sci. 257(5), 1524–1532. DOI: 10.1016/j.apsusc.2010.08.090.10.1016/j.apsusc.2010.08.090Open DOISearch in Google Scholar

10. Bagheri Ghomi, A. & Ashayeri, V. (2012). Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions. Iranian J. Cataly. 2(3), 135–140.Search in Google Scholar

11. Jha, V.K. & Hayashi, S.H. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. J. Hazard. Mater. 169(1–3), 29–35. DOI: 10.1016/j.jhazmat.2009.03.052.10.1016/j.jhazmat.2009.03.05219395165Open DOISearch in Google Scholar

12. Gedik, K. & Imamoglu, I. (2008). Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J. Hazard. Mater. 155(1–2), 385–392. DOI: 10.1016/j.jhazmat.2007.12.101.10.1016/j.jhazmat.2007.12.10118262351Open DOISearch in Google Scholar

13. Kocaoba, S., Orhan, Y. & Akyüz, T. (2007). Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. J. Desali. 214(1–3), 1–10. DOI: 10.1016/j.desal.2006.09.023.10.1016/j.desal.2006.09.023Open DOISearch in Google Scholar

14. Vassileva, P. & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J. Hazard. Mater. 170 (2–3), 948–953. DOI: 10.1016/j.jhazmat.2009.05.062.10.1016/j.jhazmat.2009.05.06219524358Open DOISearch in Google Scholar

15. Danesh-Khorasgani, M. & Nezamzadeh-Ejhieh, A. (2016). PVC-zeolite nanoparticle-surfactant anion exchanger membrane: preparation, characterization, and its application in development of ion-selective electrode for detection of sulfate. J. Solid State. Electro. Chem. 20(10), 2827–2833. DOI: 10.1007/s10008-016-3265-9.10.1007/s10008-016-3265-9Search in Google Scholar

16. Hashemi, S. & Nezamzadeh-Ejhieh, A. (2014). A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles. J. Desali & Water Treat. 57, 3304–3314. DOI: 10.1080/19443994.2014.989916.10.1080/19443994.2014.989916Open DOISearch in Google Scholar

17. Sharafzadeh, S. & Nezamzadeh-Ejhieh, A. (2015). Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. J. Electrochim. Acta 184, 371–380. DOI: 10.1016/j.electacta.2015.09.164.10.1016/j.electacta.2015.09.164Open DOISearch in Google Scholar

18. Deravanesiyan, M. & Malekpour, M.B.A. (2015). The removal of Cr (III) and Co (II) ions from aqueous solution by two mechanisms using a new sorbent (alumina nanoparticles immobilized zeolite) — Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 209, 246–257. DOI: 10.1016/j.molliq.2015.05.038.10.1016/j.molliq.2015.05.038Open DOISearch in Google Scholar

19. Ouadjenia-Marouf, R., Schott, J. & Yahiaoui, A. (2013). Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. J. Arab. Chem. 6(4), 401–406. DOI: 10.1016/j.arabjc.2010.10.018.10.1016/j.arabjc.2010.10.018Open DOISearch in Google Scholar

20. Ajoudanian, N. & Nezamzadeh-Ejhieh, A. (2015). Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. J. Mater. Sci. Semi Proce. 36, 162–169. DOI: 10.1016/j.mssp.2015.03.042.10.1016/j.mssp.2015.03.042Open DOISearch in Google Scholar

21. Dianati Tilaki, R.A., Kahe, D. & Zazouli, M.A. (2013). Efficiency of Zeolite Clinoptilolite in Removal of Ammoniumion from Polluted Waters. J. Maz. Univ. Med. Sci. 22(97), 250–256. http://jmums.mazums.ac.ir/article-1-1815-en.html.Search in Google Scholar

22. APHA, 2005. Standard Methods for the Examination of Water & Wastewater. Washington DC.Search in Google Scholar

23. Jiménez-cedillo, M.J., Olguín, M.T. & Fall, Ch. (2009). Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron – manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 163(2–3), 939–945. DOI: 10.1016/j.jhazmat.2008.07.049.10.1016/j.jhazmat.2008.07.04918723281Open DOISearch in Google Scholar

24. Derikvandi, H. & Nezamzadeh-Ejhieh, A. (2017). A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Molecu. Catal. A: Chem. 426, 158–169. DOI: 10.1016/j.molcata.2016.11.011.10.1016/j.molcata.2016.11.011Open DOISearch in Google Scholar

25. Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H. & Silipas, D. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. J. Environ. Manage 137, 69–80. DOI: 10.1016/j.jenvman.2014.02.007.10.1016/j.jenvman.2014.02.00724603029Open DOISearch in Google Scholar

26. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R. & Bonilla-Petriciolet, A. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage 116, 213–221. DOI: 10.1016/j.jenvman.2012.12.010.10.1016/j.jenvman.2012.12.01023321372Open DOISearch in Google Scholar

27. Wang, S. & A riyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Coll. Interf. Sci. 314(1), 25–31. DOI: 10.1016/j.jcis.2007.05.032.10.1016/j.jcis.2007.05.03217543322Open DOISearch in Google Scholar

28. Moussavi, G., Talebi, S., Farrokhi, M. & Sabouti, R.M. (2011). The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. J. Chem. Eng. 171(3), 1159–1169. DOI: 10.1016/j.cej.2011.05.016.10.1016/j.cej.2011.05.016Open DOISearch in Google Scholar

29. Inglezakis, V.J., Stylianou, M., Gkantzou, D. & Loizidou, M.D. (2007). Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. J. Desali. 210(1–3), 248–256. DOI: 10.1016/j.desal.2006.05.049.10.1016/j.desal.2006.05.049Open DOISearch in Google Scholar

30. Dal Bosco, S.M., Jimenez, R.S. & Carvalho, W.A. (2005). Removal of toxic metals from wastewater by Brazilian natural scolecite. J. Coll. Interf. Sci. 281(2) 424–431. DOI: 10.1016/j.jcis.2004.08.060.10.1016/j.jcis.2004.08.06015571698Open DOISearch in Google Scholar

31. Nezamzadeh-Ejhieh, A. & Raja, G. (2013). Modification of Nanoclinoptilolite Zeolite with Hexadecyltrimethylammonium Surfactant as an Active Ingredient of Chromate-Selective Membrane Electrode. J. Chemis. 1–13. DOI: 10.1155/2013/685290.10.1155/2013/685290Open DOISearch in Google Scholar

32. Hegazi, H.A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. J. HBRC 9(3), 276–282. DOI: 10.1016/j.hbrcj.2013.08.004.10.1016/j.hbrcj.2013.08.004Open DOISearch in Google Scholar

33. Sarı, A. & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160(2–3), 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.10.1016/j.jhazmat.2008.03.00518406520Open DOISearch in Google Scholar

34. Darvishi-Cheshme Soltani, R., Shams-Khorramabadi, G., Khataee, A.R. & Jorfi, S. (2013). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 45(3), 973–980. DOI: 10.1016/j.jtice.2013.09.014.10.1016/j.jtice.2013.09.014Open DOISearch in Google Scholar

35. Esfehani, A. & Shamohammadi-Heidari, Z. (2011). Manganese Removal from Aqueous Solution by Natural and Sodium Modified Zeolite. J. Environ. Stud. 37, 28–30.Search in Google Scholar

36. Borandegi, M. & Nezamzadeh-Ejhieh, A. (2015). Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid. J. Coll. &Surf. A: Physicochem & Engin Aspects. 479, 35–45. DOI: 10.1016/j.colsurfa.2015.03.040.10.1016/j.colsurfa.2015.03.040Open DOISearch in Google Scholar

37. Sprynskyy, M., Buszewski, B., Terzyk, A.P. & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Coll. Inter. Sci. 304(1), 21–28. DOI: 10.1016/j.jcis.2006.07.068.10.1016/j.jcis.2006.07.06816989853Open DOISearch in Google Scholar

38. Malamis, S. & Katsou, F. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 252–253, 428–461. DOI: 10.1016/j.jhazmat.2013.03.024. 310.1016/j.jhazmat.2013.03.024.3Open DOISearch in Google Scholar

9. Behnamfard, A. & Salarirad, M.M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 170(1), 127–133. DOI: 10.1016/j.jhazmat.2009.04.124.10.1016/j.jhazmat.2009.04.12419481345Open DOISearch in Google Scholar

40. Anari-Anaraki, M. & Nezamzadeh-Ejhieh, A. (2015). Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J. Coll. Interf. Sci. 440, 272–281. DOI: 10.1016/j.jcis.2014.11.017.10.1016/j.jcis.2014.11.01725460715Open DOISearch in Google Scholar

41. Naghash, A. & Nezamzadeh-Ejhieh, A. (2015). Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. J. Industri & Eng. Chem. 31, 185–191. DOI: 10.1016/j.jiec.2015.06.022.10.1016/j.jiec.2015.06.022Open DOISearch in Google Scholar

42. Dizge, N., Keskinler, B. & Barlas, H. (2009). Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. J. Hazard. Mater. 167(1–3), 915–926. DOI: 10.1016/j.jhazmat.2009.01.073.10.1016/j.jhazmat.2009.01.07319231079Open DOISearch in Google Scholar

43. Najafi, M., Yousefi, Y. & Rafati, A.A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. J. Sep. Purif. Technol. 85, 193–205. DOI: 10.1016/j.seppur.2011.10.011.10.1016/j.seppur.2011.10.011Open DOISearch in Google Scholar

44. Heidari-Chaleshtori, M. & Nezamzadeh-Ejhieh, A. (2015). Clinoptilolite nano-particles modified with aspartic acid for removal of Cu(II) from aqueous solutions: isotherms and kinetic aspects. J. New. Chem. 39, 9396–9406. DOI: 10.1039/C5NJ01631B.10.1039/C5NJ01631Open DOISearch in Google Scholar

45. Guo, H., Zhang, S., Kou, Z., Zhai, S., Ma, W. & Yang, Y. (2015). Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. J. Carbohydr. Polym. 115, 177–85. DOI: 10.1016/j.carbpol.2014.08.041.10.1016/j.carbpol.2014.08.04125439883Open DOISearch in Google Scholar

46. Ozay, O., Ekici, S., Baran, Y., Aktas, N. & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. J. Water Res. 43. 4403–4411. DOI: 10.1016/j.watres.2009.06.058.10.1016/j.watres.2009.06.05819625066Open DOISearch in Google Scholar

47. Rezaee, A., Godini, H. & Jorfi, S. (2010). Nitrate removal from aqueous solution using mgcl2 impregnated activated carbon. J. Environ. Eng. & Manag. 9(3), 449–452.10.30638/eemj.2010.062Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering