Open Access

Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids


Cite

1. Clemente, J.S. & Fedorak, P.M. (2005). A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585–600. DOI: 10.1016/j.chemosphere.2005.02.065.10.1016/j.chemosphere.2005.02.06515963797Open DOISearch in Google Scholar

2. Headley, J.V., Peru, K.M. & Barrow, M.P. (2016). Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectr. Rev. 35(2), 311–328. DOI: 10.1002/mas.21472.10.1002/mas.2147225970647Open DOISearch in Google Scholar

3. Mandal, P.C. & Nagarajan, T. (2016) Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol. Pol. J. Chem. Technol. 18(3) 44–49. DOI: 10.1515/pjct-2016-0047.10.1515/pjct-2016-0047Open DOISearch in Google Scholar

4. Shi, L.J., Shen, B.X. & Wang, G.Q. (2008). Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22(6), 4177–4181. DOI: 10.1021/ef800497p.10.1021/ef800497pOpen DOISearch in Google Scholar

5. Lirong, D. (2005). Formation mechanism and model of oil and gas accumulations in the Melut Basin, Sudan. Bulletin of Mineralogy Petrol. Geochem. 24(1), 50–57.Search in Google Scholar

6. Shukri, N.M., Bakar, W.A.W.A., Jaafar, J. & Majid, Z.A. (2015). Removal of naphthenic acids from high acidity Korean crude oil utilizing catalytic deacidification method. J. Ind. Eng. Chem. 28, 110–116. DOI: 10.1016/j.jiec.2015.02.005.10.1016/j.jiec.2015.02.005Open DOISearch in Google Scholar

7. Wang, Y.Z., Li, J.Y., Sun, X.Y., Duan, H.L., Song, C.M., Zhang, M.M. & Liu, Y.P. (2014). Removal of naphthenic acids from crude oils by fixed-bed catalytic esterification. Fuel 116, 723–728. DOI: 10.1016/j.fuel.2013.08.047.10.1016/j.fuel.2013.08.047Open DOISearch in Google Scholar

8. Nasir Shah, S., Mutalib, M.I.A., Pilus, R.B.M. & Lethesh, K.C. (2014). Extraction of Naphthenic Acid from Highly Acidic Oil Using Hydroxide-Based Ionic Liquids. Energy Fuels 29(1), 106–111. DOI: 10.1021/ef502169q.10.1021/ef502169qSearch in Google Scholar

9. Shah, S.N., Chellappan, L.K., Gonfa, G., Mutalib, M.I.A., Pilus, R.B.M. & Bustam, M.A. (2016). Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids. Chem. Eng. J. 284, 487–493. DOI: 10.1016/j.cej.2015.09.017.10.1016/j.cej.2015.09.017Open DOISearch in Google Scholar

10. Shohaimi, N.A.M., Bakar, W.A.W.A. & Jaafar, J. (2014). Catalytic neutralization of acidic crude oil utilizing ammonia in ethylene glycol basic solution. J. Ind. Eng. Chem. 20(4), 2086–2094. DOI: 10.1016/j.jiec.2013.09.037.10.1016/j.jiec.2013.09.037Search in Google Scholar

11. Wang, Y.Z., Sun, X.Y., Liu, Y.P. & Liu, C.G. (2007). Removal of naphthenic acids from a diesel fuel by esterification. Energy Fuels 21(2), 941–943. DOI: 10.1021/ef060501r.10.1021/ef060501rOpen DOISearch in Google Scholar

12. Zifeng, L., Songbai, T. & Zijun, W. (2009). Study on esterification for reducing total acid number of high acid crude oil by Mg/Al oxides [J]. Pet. Process. Petrochem. 8, 024.Search in Google Scholar

13. Wang, Y.Z., Duan, H.I., Song, C.M., Han, X.T. & Ma, X.R. (2014). Removal of naphthenic acids from crude oils by catalytic decomposition using Mg–Al hydrotalcite/γ-Al2O3 as a catalyst. Fuel 134, 499–504. DOI: 10.1016/j.fuel.2014.06.026.10.1016/j.fuel.2014.06.026Open DOISearch in Google Scholar

14. Wang, H., Duan, W., Lei, Y., Wu, Y., Guo, K. & Wang, X. (2015). An intracrystalline catalytic esterification reaction between ethylene glycol intercalated layered double hydroxide and cyclohexanecarboxylic acid. Catal Cammun. 62, 44–47. DOI: 10.1016/j.catcom.2015.01.004.10.1016/j.catcom.2015.01.004Open DOISearch in Google Scholar

15. Lee, Y.H., Park, J.Y., Park, S.Y., Kim, C.H., Nam, J., Kim, Y.J. & Bae, J.W. (2016). Removal of benzoic acid in heavy oils by esterification using modified Ferrierite: Roles of Bronsted and Lewis acid sites. Energy Fuels, 30(7), 5391–5397. DOI: 10.1021/acs.energyfuels.6b00448.10.1021/acs.energyfuels.6b00448Open DOISearch in Google Scholar

16. Dastjerdi, Z. (2010). The Esterification of Naphthenic Acids for Methyl Ester Production. Environ. Prog. Sustain. Energ. 32(2), 406–410. DOI: 10.1002/ep.11606.10.1002/ep.11606Open DOISearch in Google Scholar

17. Quiroga-Becerra, H., Mejía-Miranda, C., Laverde-Cataño, D., Hernández-López, M. & Gómez-Sánchez, M. (2012). A kinetic study of esterification of naphthenic acids from a Colombian heavy crude oil. CT&F-Ciencia, Tecnología y Futuro 4(5), 21–31. Retrieved on December 30, 2016, from http://www.scielo.org.co/scielo.php?pid=S0122-53832012000100002&script=sci_arttext10.29047/01225383.219Search in Google Scholar

18. Li, X., Zhu, J., Liu, Q. & Wu, B. (2013). The removal of naphthenic acids from dewaxed VGO via esterification catalyzed by Mg–Al hydrotalcite. Fuel Process. Technol. 111, 68–77. DOI: 10.1016/j.fuproc.2013.01.016.10.1016/j.fuproc.2013.01.016Open DOISearch in Google Scholar

19. Mandal, P.C., Sasaki, M. & Goto, M. (2013). Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol. Fuel Process. Technol. 106, 641–644. DOI: 10.1016/j.fuproc.2012.09.058.10.1016/j.fuproc.2012.09.058Open DOISearch in Google Scholar

20. Khan, M.K., Insyani, R., Lee, J., Yi, M., Lee, J.W. & Kim, J. (2016). A non-catalytic, supercritical methanol route for effective deacidification of naphthenic acids. Fuel 182, 650–659. DOI: 10.1016/j.fuel.2016.06.023.10.1016/j.fuel.2016.06.023Open DOISearch in Google Scholar

21. Sitthithanaboon, W., Reddy, H.K., Muppaneni, T., Ponnusamy, S., Punsuvon, V., Holguim, F., Dungan, B. & Deng, S. (2015). Single-step conversion of wet Nannochloropsis gaditana to biodiesel under subcritical methanol conditions. Fuel 147, 253–259. DOI: 10.1016/j.fuel.2015.01.051.10.1016/j.fuel.2015.01.051Open DOISearch in Google Scholar

22. Wan, L., Liu, H. & Skala, D. (2014). Biodiesel production from soybean oil in subcritical methanol using MnCO3/ZnO as catalyst. Appl. Catal. B. 152, 352–359. DOI: 10.1016/j.apcatb.2014.01.033.10.1016/j.apcatb.2014.01.033Open DOISearch in Google Scholar

23. Caldas, B.S., Nunes, C.S., Souza, P.R., Rosa, F.A., Visentainer, J.V., Oscar de Olivera, S. & Muniz, E.C. (2016). Supercritical ethanolysis for biodiesel production from edible oil waste using ionic liquid [HMIM][HSO4] as catalyst. Appl. Catal. B. 181, 289–297. DOI: 10.1016/j.apcatb.2015.07.047.10.1016/j.apcatb.2015.07.047Open DOISearch in Google Scholar

24. Ullah, Z., Bustam, M.A. & Man, Z. (2015). Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energ. 77, 521–526. DOI: 10.1016/j.renene.2014.12.040.10.1016/j.renene.2014.12.040Open DOISearch in Google Scholar

25. Andreani, L. & Rocha, J. (2012). Use of ionic liquids in biodiesel production: a review. Braz. J. Chem. Eng. 29(1), 1–13. DOI: 10.1590/S0104-66322012000100001.10.1590/S0104-66322012000100001Open DOISearch in Google Scholar

26. Seddon, K.R. (1997). Ionic liquids for clean technology. J. Chem. Tech. Biotech. 68(4), 351–356. DOI: 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-410.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4Open DOISearch in Google Scholar

27. Olkiewicz, M., Plechkova, N.V., Earle, M.J., Fabregat, A., Stüber, F., Fortuny, A., Font, J. & Bengoa, C. (2016). Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids. Appl. Catal. B 181, 738–746. DOI: 10.1016/j.apcatb.2015.08.039.10.1016/j.apcatb.2015.08.039Open DOISearch in Google Scholar

28. Kumar, M., Sharma, K. & Arya, A.K. (2012). Use of SO3H-functionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetra. Lett. 53(34), 4604–4608. DOI: 10.1016/j.tetlet.2012.06.085.10.1016/j.tetlet.2012.06.085Search in Google Scholar

29. Ullah, Z., Bustam, M.A., Muhammad, N., Man, Z. & Khan, A.S. (2015). Synthesis and thermophysical properties of hydrogensulfate based acidic ionic liquids. J. Sol. Chem. 44(3-4), 875–889. DOI: 10.1007/s10953-015-0329-x.10.1007/s10953-015-0329-xOpen DOISearch in Google Scholar

30. Aghabarari, B., Ghiaci, M., Amini, S.G., Rahimi, E. & Martinez-Huerta, M. (2014). Esterification of fatty acids by new ionic liquids as acid catalysts. J. Taiwan Inst. Chem. Eng. 45(2), 431–435. DOI: 10.1016/j.jtice.2013.08.003.10.1016/j.jtice.2013.08.003Open DOISearch in Google Scholar

31. Mahajan, S. & Konar, S.K. (2006). Determining the acid number of biodiesel. J. Am. Oil Chem. Soc. 83(6), 567–570. DOI: 10.1016/j.fuel.2016.06.023.10.1016/j.fuel.2016.06.023Open DOISearch in Google Scholar

32. Li, Y., Hu, S., Cheng, J. & Lou, W. (2014). Acidic ionic liquid-catalyzed esterification of oleic acid for biodiesel synthesis. Chin. J. Catal. 35(3), 396–406. DOI: 10.1016/S1872-2067(14)60005-X.10.1016/S1872-2067(14)60005-XOpen DOISearch in Google Scholar

33. Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z. & Yoo, C. (2016). Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arab. J. Chem. 9(4), 578–587. DOI: 10.1016/j.arabjc.2013.09.034.10.1016/j.arabjc.2013.09.034Open DOISearch in Google Scholar

34. Chuah, L.F., Bokhari, A., Yusup, S., Klemeš, J.J., Abdullah, B. & Akbar, M.M. (2015). Optimisation and kinetic studies of acid esterification of high free fatty acid rubber seed oil. Arab. J. Sci. Eng. 1–12. DOI: 10.1007/s13369-015-2014-1.10.1007/s13369-015-2014-1Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering