Open Access

Ultrasonic treatment of baker’s yeast effluent using SnO2/TiO2 composite


Cite

1. Dukkancı, M. & Gunduz, G. (2013). Sonolytic degradation of butyric acid in aqueous solutions. J. Env. Management 129, 564–568. DOI: 10.1016/j.jenvman.2013.08.024.10.1016/j.jenvman.2013.08.02424029459Search in Google Scholar

2. Guo, Z., Feng, R., Li, J., Zheng, Z. & Zheng, Y. (2008). Degradation of 2,4-dinitrophenol by combining sonolysis and different additives. J. Hazard Mater. 158, 164–169. DOI: 10.1016/j.jhazmat.2008.01.056.10.1016/j.jhazmat.2008.01.05618321642Search in Google Scholar

3. Guzman-Duque, F., Petrier, C., Pulgarin, C., Penuela, G. &Torres-Palma, A. (2011). Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultr. Sonochem. 18, 440–446. DOI: 10.1016/j.ultsonch.2010.07.019.10.1016/j.ultsonch.2010.07.01920797896Search in Google Scholar

4. Pang, Y.L., Abdullah, A.Z. & Bhatia, S. (2011). Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277, 1–14. DOI: 10.1016/j.desal.2011.04.049.10.1016/j.desal.2011.04.049Search in Google Scholar

5. Merouani, S., Hamdaoui, O., Saoudi, F. & Chiha, M. (2010). Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chem. Eng. J.158, 550–557. DOI: 10.1016/j.cej.2010.01.048.10.1016/j.cej.2010.01.048Search in Google Scholar

6. Suslick, K.S. (1989). The chemical effects of ultrasound. Sci. Am. 260(82), 80–86.10.1038/scientificamerican0289-80Search in Google Scholar

7. Xie, W., Qin, Y., Liang, D., Song, D. & He, D. (2011). Degradation of m-xylene solution using ultrasonic irradiation. Ultr. Sonochem. 18, 1077–1081. DOI: 10.1016/j.ultsonch.2011.03.014.10.1016/j.ultsonch.2011.03.01421489847Search in Google Scholar

8. Eren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Env. Manage. 104, 127–141. DOI: 10.1016/j.jenvman.2012.03.028.10.1016/j.jenvman.2012.03.02822495014Search in Google Scholar

9. Gao, J., Jiang, R., Wang, J., Kang, P., Wang, B., Li, Y., Li, K. & Zhang, X. (2011). The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation. Ultr. Sonochem. 18, 541–548. DOI: 10.1016/j.ultsonch.2010.09.012.10.1016/j.ultsonch.2010.09.01220980186Search in Google Scholar

10. Gao, J., Jiang, R., Wang, J., Wang, B., Li, K., Kang, P., Li, Y. & Zhang, X. (2011). Sonocatalytic performance of Er3+:YAlO3/TiO2–Fe2O3 in organic dye degradation. Chem.l En.g J. 168, 1041–1048. DOI: 10.1016/j.cej.2011.01.079.10.1016/j.cej.2011.01.079Search in Google Scholar

11. Abdullah, A.Z. & Ling, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J. Hazard Mater. 173, 159–167. DOI: 10.1016/j.hazmat.2009.08.060.Search in Google Scholar

12. Jamalluddin, N.A. & Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultr. Sonochem. 18, 669–678. DOI: 10.1016/j.ultsonch.2010.09.004.10.1016/j.ultsonch.2010.09.004Search in Google Scholar

13. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A. & Khalid, N.R. (2014). Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultr. Sonochem. 21, 761–773. DOI: 10.1016/j.ultsonch.2013.08.014.10.1016/j.ultsonch.2013.08.014Search in Google Scholar

14. Anju, S.G., Jyothi, K.P., Joseph, S., Suguna, Y. & Yesodharan, E.P. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO2 and ZnO-TiO2. Res. J. Rec. Scien. 1, 191–201.Search in Google Scholar

15. Wang, J., Jiang, Z., Zhang, L., Kang, P., Xie, Y., Lv, Y., Xu, R. & Zhang, X. (2009). Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano sized TiO2, nano sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultr. Sonochem. 16, 225–231. DOI: 10.1016/j.ultsonch.2008.08.005.10.1016/j.ultsonch.2008.08.005Search in Google Scholar

16. Wang, J., Lv, Y., Zhang, L., Liu, B., Jiang, R., Han, G., Xu, R. & Zhang, X. (2010). Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultr. Sonochem. 17, 642–648. DOI: 10.1016/j.ultsonch.2009.12.016.10.1016/j.ultsonch.2009.12.016Search in Google Scholar

17. Zeng, Y.F., Liu, Z.L. & Qin, Z.Z. (2009). Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. J. Hazard Mater. 162, 682–687. DOI: 10.1016/j.jhazmat.2008.05.094.10.1016/j.jhazmat.2008.05.094Search in Google Scholar

18. Pala, A. & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard Mater. B127, 141–148. DOI: 10.1016/j.jhazmat.2005.06.033.10.1016/j.jhazmat.2005.06.033Search in Google Scholar

19. Pena, M., Coca, M., Gonzalez, G., Rioja, R. & Garcia, M.T. (2003). Chemical oxidation of wastewater from molasses fermantation with ozone. Chemosphere 51, 893–900. DOI: 10.1016/S0045-6535(03)00159-0.10.1016/S0045-6535(03)00159-0Search in Google Scholar

20. Zhou, Y., Liang, Z. & Wang, Y. (2008). Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate. Desalination 225, 301–311. DOI: 10.1016/j.desal.2007.07.010.10.1016/j.desal.2007.07.010Search in Google Scholar

21. Verma, A.K., Raghukumar, C. & Naik, C.G. (2011). A novel hybrid technology for remediation of molasses-based raw effluents. Biores. Techn.102, 2411–2418. DOI: 10.1016/j.biortech.2010.10.112.10.1016/j.biortech.2010.10.11221111609Search in Google Scholar

22. Liang, Z., Wang, Y., Zhou, Y. & Liu, H. (2009). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem. Eng J. 52, 88–94. DOI: 10.1016/j.cej.2009.03.036.10.1016/j.cej.2009.03.036Search in Google Scholar

23. Liang, Z., Wang, Y., Zhou, Y., Liu, H. & Wu, Z. (2009). Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep. Pur. Techn. 68, 382–389. DOI: 10.1016/j.seppur.2009.60011.Search in Google Scholar

24. Sangave, P.C. & Pandit, A.B. (2004). Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultr. Sonochem. 11, 197–203. DOI: 10.1016/j.ultsonch.2004.01.026.10.1016/j.ultsonch.2004.01.02615081981Search in Google Scholar

25. Sangave, P.C. & Pandit, A.B. (2006). Ultrasound and enzyme assisted biodegradation of distillery wastewater. J. Env. Manage. 80, 36–46. DOI: 10.1016/j.jenvman.2005.08.010.10.1016/j.jenvman.2005.08.01016338051Search in Google Scholar

26. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere 68, 42–52. DOI: 10.1016/j.chemosphere.2006.12.052.10.1016/j.chemosphere.2006.12.05217276488Search in Google Scholar

27. Padoley, K.V., Saharan, V.K., Mudliar, S.N., Pandey, R.A. & Pandit, A.B. (2012). Cavitationally induced biodegradability enhancement of a distillery wastewater. J. Hazard Mater. 219–220, 69–74. DOI: 10.1016/j.jhazmat.2012.03.054.10.1016/j.jhazmat.2012.03.05422502898Search in Google Scholar

28. Zhang, H., Duan, L. & Zhang, D. (2006). Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J. Hazard Mater. B138, 53–59. DOI: 10.1016/j.jhazmat.2006.05.034.10.1016/j.jhazmat.2006.05.03416806681Search in Google Scholar

29. Yılmaz, E. (2014). Maya endüstrisi atıksuyunun ses ötesi dalgalarla arıtılması. M.Sc. Chemical engineering department, Hitit University, Corum, Turkey.Search in Google Scholar

30. Gogate, P.R., Katekhaye, S.N. (2012). A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem. Eng. Process. Process. Int. 61, 23–29. DOI: 10.1016/j.cep.2012.06.016.10.1016/j.cep.2012.06.016Search in Google Scholar

31. Talebian, N., Nilforoushan, M.R. & Mogaddas, F.J. (2013). Comparative study on the sonophotocatalytic degradation of hazardous waste. Cer. Intern. 39(5), 4913–4921. DOI: 10.1016/j.ceramint.2012.11.085.10.1016/j.ceramint.2012.11.085Search in Google Scholar

32. Wang, J., Pan, Z., Zhang, Z., Zhang, X., Jiang, Y., Ma, T., Wen, F., Li, Y. & Zhang, P. (2007). The investigation on ultrasonic degradation of acid fuchsine in the presence of ordinary and nanometer rutile TiO2 and the comparison of their sonocatalytic activities. Dyes Pigm. 74, 525–530. DOI: 10.1016/j.dyepig.2006.03.010.10.1016/j.dyepig.2006.03.010Search in Google Scholar

33. Ildırar, D. & Fındık, S. (2016). Effect of operational parameters on ultrasonic treatment of baker’s yeast effluent. Sakarya Uni. J. Sci. 20(2), 185–191.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering