Open Access

CFD modelling of hydrogen starvation conditions in a planar Solid Oxide Fuel Cell


Cite

1. Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H. & Lee, Ch.T. (2017). Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods. Renewable & Sustainable Energy Rev. 67, 513–573. DOI: 10.1016/j.rser.2016.Search in Google Scholar

2. Albrecht, K.J. & Braun, R.J. (2016). The effect of coupled mass transport and internal reforming on modeling of solid Oxide fuel cells part I: channel-level model development and steady-state comparison. J. Power Sources, 304, 384–401. DOI: 10.1016/j.jpowsour.2015.11.043.10.1016/j.jpowsour.2015.11.043Search in Google Scholar

3. Amiri, A., Vijay, Tade, P.M.O., Ahmed, K., Ingram, G.D., Pareek, V. & Utikar, R. (2016). Planar SOFC system modelling and simulation including a 3D stack module, International J. Hydro. Energy 41, 2919–2930. DOI: 10.1016/j.ijhydene.2015.12.076.10.1016/j.ijhydene.2015.12.076Search in Google Scholar

4. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane powered micro-tubular, single-chamber solid oxide fuel cell. J. Power Sources, 195, 7796–7807. DOI: 10.1016/j.jpowsour.2010.01.084.10.1016/j.jpowsour.2010.01.084Search in Google Scholar

5. Yurkiv, V. (2014). Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study. Electrochimica Acta 143, 114–128. DOI: 10.1016/j.electacta.2014.07.136.10.1016/j.electacta.2014.07.136Search in Google Scholar

6. Gaynor, R., Mueller, F., Jabbari, F. & Brouwer, J. (2008). On control concepts to prevent fuel starvation in solid oxide fuel cells, J. Power Sources 180, 330–342. DOI: 10.1016/j.jpowsour.2008.01.078.10.1016/j.jpowsour.2008.01.078Search in Google Scholar

7. Stiller, C., Thorud, B., Seljebo, S., Mathisen, O., Karoliussen, H. & Bolland, O. (2005). Finite volume modeling and hybrid cycle performance of planar and tubular solid oxide fuel cells, J. Power Sources 141(2), 227–240. DOI: 10.1016/j.jpowsour.2004.09.019.10.1016/j.jpowsour.2004.09.019Search in Google Scholar

8. Kandepu, R., Imsland, L., Foss, B. A., Stiller, C., Thorud, B. & Bolland, O. (2007). Energy 32(4), 406–417. DOI: 10.1016/j.energy.2006.07.034.10.1016/j.energy.2006.07.034Search in Google Scholar

9. Lee, T.H., Park, K.Y., Kim, J.T., Seo, Y., Kim, K.B., Song, K.B., Park, B. & Park, J.Y. (2015). Degradation analysis of anode-supported intermediate temperature – solid oxide fuel cells under various failure modes, J. Power Sources 276, 120–132. DOI: 10.1016/j.jpowsour.2014.11.077.10.1016/j.jpowsour.2014.11.077Search in Google Scholar

10. Chen, G., Guan, G., Abliz, S., Kasai, Y. & Abudula, A. (2011). Rapid degradation mechanism of Ni-CHO anode in low concentrations of H2 at a high current density. Intern. J. Hydrogen Energy 36, 8461–8467. DOI: 10.1016/j/ijhydene.2011.04.046.Search in Google Scholar

11. Brus, G., Miyoshi, K., Iwai, H., Saito, M. & Yoshida, H. (2015). Change of an anode’s microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell. Intern. J. Hydrogen Energy 40, 6927–6934. DOI: 10.1016/j/ijhydene.2015.03.143.Search in Google Scholar

12. Sarantaridis, D., Rudkin, R.A. & Atkinson, A. (2008). Oxidation failure modes of anode-supported solid oxide fuel cells. J. Power Sources 180, 704–710.10.1016/j.jpowsour.2008.03.011Search in Google Scholar

13. Hatae, T., Matsuzaki, Y., Yamashita, S. & Yamazaki, Y. (2009). Current density dependence of changes in the microstructure of SOFC anodes during electrochemical oxidation. Solid State Ionics 180, 23–25, 1305–1310. DOI: 10.1016/j.ssi.2009.08.003.10.1016/j.ssi.2009.08.003Search in Google Scholar

14. Fang, Q., Blum, L., Peters, R., Peksen, M., Batfalsky, P. & Stolten, D. (2015). SOFC stack performance under high fuel utilization. Intern. J. Hydrogen Energy 40, 1128–1136. DOI: 10.1016/j.ijhydene.2014.11.094.10.1016/j.ijhydene.2014.11.094Search in Google Scholar

15. Fang, Q., Blum, L., Batfalsky, P., Menzler, N.H., Packbier, U. & Stolten, D. (2013). Durability test and degradation behaviour of a 2.5 kW SOFC stack with internal reforming of LNG. Intern. J. Hydrogen Energy 38, 36, 16344–16353. DOI: 10.1016/j.ijhydene.2013.09.140.10.1016/j.ijhydene.2013.09.140Search in Google Scholar

16. Majewski, A.J. & Dhir, A. (2015). Direct utilization of methane in microtubular SOFC, ECS Transactions, 68, 1, 2189–2198, 10.1149/06801.2189ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.Search in Google Scholar

17. Torrell, M., Morata, A., Kayser, P., Kendall, M., Kendall, K., Tarancon, A. (2015). Performance and long term degradation of 7 W micro-tubular solid oxide fuel cell for portable applications. J. Power Sources 285, 439–448. DOI: 10.1016/j.jpowsour.2015.03.030.10.1016/j.jpowsour.2015.03.030Search in Google Scholar

18. Lawlor, V. (2013). Review of the micro-tubular solid oxide fuel cell (part II: cell design issues and research activities). J. Power Sources 240, 421–441. DOI: 10.1016/j.jpowsour.2013.03.191.10.1016/j.jpowsour.2013.03.191Search in Google Scholar

19. Koshiyama, T., Nakajima, H., Karimata, T., Kitahara, T., Ito, K., Masuda, S., Ogura, Y. & Shimano, J. (2015). Direct current distribution measurement of an electrolyte-supported planar Solid Oxide Fuel Cell under the rib and channel by segmented electrodes. ECS Trans. 68(1), 2217–2226.10.1149/06801.2217ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.10.1149/06801.2217ecstSearch in Google Scholar

20. Sezer, H., Celik, I.B. & Yang, T. (2015). Electrochemical behaviour of phosphine induced anode performance degradation in a planar SOFC: a numerical study. ECS Trans.68(1), 2515–2525. 10.1149/06801.2515ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.Search in Google Scholar

21. Zhang, Z., Chen, J., Yue, D., Yang, G., Ye, S., He, C., Wang, W., Yuan, J. & Huang, N. (2014). Three-dimensional CFD modeling of transport phenomena in a cross-flow anodesupported planar SOFC. Energies 7, 80–98. DOI: 10.3390/en7010080.10.3390/en7010080Search in Google Scholar

22. Bossel, U. (2015). Small scale power generation for road trucks with planar SOFC system. ECS Transactions 68(1), 193–199. 10.1149/06801.193ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.10.1149/06801.0193ecstSearch in Google Scholar

23. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. PJChT, 16(2), 51–55. DOI: 10.2478/pjct-2014-0029.10.2478/pjct-2014-0029Search in Google Scholar

24. Pianko-Oprych, P., Zinko, T. & Jaworski, Z. (2016). Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell. Pol. J. Chem. Technol. 18(1), 64–71. DOI: 10.1515/pjct-2016-0011.10.1515/pjct-2016-0011Search in Google Scholar

25. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of solid oxide fuel cells, Intern. J. Hydrogen Energy 32, 761–786. DOI: 10.1016/j.ijhydene.2006.11.028.10.1016/j.ijhydene.2006.11.028Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering