Open Access

Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints


Cite

1. Fujishima, A., Zhang, X. & Tryk, D. (2007). Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydro. Energ. 322664-322672. DOI: 10.1016/j.ijhydene.2006.09.009.10.1016/j.ijhydene.2006.09.009Search in Google Scholar

2. Fujishima, A., Zhang, X. & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582. DOI:10.1016/j.surfrep.2008.10.001.10.1016/j.surfrep.2008.10.001Search in Google Scholar

3. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C. 13, 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001.10.1016/j.jphotochemrev.2012.06.001Search in Google Scholar

4. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purifi cation. J. Photochem. Photobiol., C. 13, 247-262. DOI: 10.1016/j.jphotochemrev.2012.07.001.10.1016/j.jphotochemrev.2012.07.001Search in Google Scholar

5. Wang, X., Liu, L. & Xu, H. (2013). Application of Photocatalytic Concrete Paint and its Effect of Decomposing Vehicle Exhaust. AMR. 683, 98-105. DOI: 10.4028/www.scientifi c.net/ amr.683.98.Search in Google Scholar

6. Chen, J. & Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 44, 1899-1906. DOI: 10.1016/j.buildenv.2009.01.002.10.1016/j.buildenv.2009.01.002Search in Google Scholar

7. Auvinen, J. & Wirtanen, L. (2008). The infl uence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42, 4101-4112. DOI: 10.1016/j.atmosenv.2008.01.031.10.1016/j.atmosenv.2008.01.031Search in Google Scholar

8. Allen, N., Edge, M., Sandoval, G., Verran, J., Stratton, J. & Maltby, J. (2005). Photocatalytic Coatings for Environmental Applications. Photochem. Photobiol. 81, 279-290. DOI: 10.1562/2004-07-01-ra-221.1.10.1562/2004-07-01-RA-221.1Search in Google Scholar

9. Salthammer, T. & Fuhrmann, F. (2007). Photocatalytic Surface Reactions on Indoor Wall Paint. Environ. Sci. Technol. 41, 6573-6578. DOI: 10.1021/es070057m.10.1021/es070057m17948810Search in Google Scholar

10. Maggos, T., Bartzis, J., Liakou, M. & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 146, 668-673. DOI: 10.1016/j.jhazmat.2007.04.079.10.1016/j.jhazmat.2007.04.07917532129Search in Google Scholar

11. Paušová, Š., Krýsa, J., Jirkovský, J., Prevot, V. & Mailhot, G. (2014). Preparation of TiO2-SiO2 composite photocatalysts for environmental applications. J. Chem. Technol. Biotechnol. 89, 1129-1135. DOI: 10.1002/jctb.4436.10.1002/jctb.4436Search in Google Scholar

12. Águia, C., Ângelo, J., Madeira, L. & Mendes, A. (2010). Influence of photocatalytic paint components on the photoactivity of P25 towards NO abatement. Catal. Today. 151, 77-83. DOI: 10.1016/j.cattod.2010.01.057.10.1016/j.cattod.2010.01.057Search in Google Scholar

13. Marolt, T., Škapin, A., Bernard, J., Živec, P. & Gaberšček, M. (2011). Photocatalytic activity of anatase-containing facade coatings. Surf. Coat. Technol. 206, 1355-1361. DOI: 10.1016/j. surfcoat.2011.08.053.Search in Google Scholar

14. Baudys, M., Krýsa, J., Zlámal, M. & Mills, A. (2015). Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem. Eng. J. 261, 83-87. DOI: 10.1016/j. cej.2014.03.112.Search in Google Scholar

15. Monteiro, R., Lopes, F., Silva, A., Ângelo, J., Silva, G., Mendes, A., Boaventura, R.A.R. & Vilar, V.J.P. (2014). Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxifi cation. Appl. Catal., B. 147, 988-999. DOI: 10.1016/j.apcatb.2013.09.031.10.1016/j.apcatb.2013.09.031Search in Google Scholar

16. Tryba, B., Homa, P., Wróbel, R. & Morawski, A. (2014). Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Infl uence of paint composition. J. Photochem. Photobiol., A. 286, 10-15. DOI: 10.1016/j.jphotochem.2014.04.012.10.1016/j.jphotochem.2014.04.012Search in Google Scholar

17. Zuccheri, T., Colonna, M., Stefanini, I., Santini, C. & Gioia, D. (2013). Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Mater. 6, 3270-3283. DOI: 10.3390/ma6083270.10.3390/ma6083270552124728811435Search in Google Scholar

18. Pal, S., Contaldi, V., Licciulli, A. & Marzo, F. (2016). Self-Cleaning Mineral Paint for Application in Architectural Herit. Coat. 6, 48-57. DOI: 10.3390/coatings6040048.10.3390/coatings6040048Search in Google Scholar

19. Akpan, U. & Hameed, B. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170, 520-529. DOI: 10.1016/j.jhazmat.2009.05.039.10.1016/j.jhazmat.2009.05.03919505759Search in Google Scholar

20. Barrocas, B., Monteiro, O., Jorge, M. & Sério, S. (2013). Photocatalytic activity and reusability study of nanocrystalline TiO2 fi lms prepared by sputtering technique. Appl. Surf. Sci. 264, 111-116. DOI: 10.1016/j.apsusc.2012.09.136.10.1016/j.apsusc.2012.09.136Search in Google Scholar

21. Addamo, M., Augugliaro, V., Di Paola, A., García-López, E., Loddo, V., Marcì, G. & Palmisano, L. (2008). Photocatalytic thin fi lms of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor. Thin Sol. Films. 516, 3802-3807. DOI: 10.1016/j.tsf.2007.06.139.10.1016/j.tsf.2007.06.139Search in Google Scholar

22. Ismail, A., Bahnemann, D., Rathousky, J., Yarovyi, V. & Wark, M. (2011). Multilayered ordered mesoporous platinum/ titania composite fi lms: does the photocatalytic activity benefi t from the fi lm thickness? J. Mater. Chem. 21, 7802-7810. DOI: 10.1039/c1jm10366k.10.1039/c1jm10366kSearch in Google Scholar

23. Hao, D., Yang, Z., Jiang, C. & Zhang, J. (2014). Synergistic photocatalytic effect of TiO2 coatings and p-type semiconductive SiC foam supports for degradation of organic contaminant. Appl. Catal. B. 144, 196-202. DOI: 10.1016/j. apcatb.2013.07.016.Search in Google Scholar

24. Malagutti, A., Mourão, H., Garbin, J. & Ribeiro, C. (2009). Deposition of TiO2 and Ag:TiO2 thin fi lms by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B. 90, 205-212. DOI: 10.1016/j. apcatb.2009.03.014.Search in Google Scholar

25. Kumar, K., Raju, N. & Subrahmanyam, A. (2011). Thickness dependent physical and photocatalytic properties of ITO thin fi lms prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257, 3075-3080. DOI: 10.1016/j.apsusc.2010.10.119.10.1016/j.apsusc.2010.10.119Search in Google Scholar

26. Chen, Y. & Dionysiou, D. (2006). Correlation of structural properties and fi lm thickness to photocatalytic activity of thick TiO2 fi lms coated on stainless steel. Appl. Catal. B. 69, 24-33. DOI: 10.1016/j.apcatb.2006.05.002.10.1016/j.apcatb.2006.05.002Search in Google Scholar

27. Wu, C., Lee, Y., Lo, Y., Lin, C. & Wu, C. (2013). Thickness- dependent photocatalytic performance of nanocrystalline TiO2 thin fi lms prepared by sol-gel spin coating. Appl. Surf. Sci. 280, 737-744. DOI: 10.1016/j.apsusc.2013.05.053.10.1016/j.apsusc.2013.05.053Search in Google Scholar

28. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Wells, N., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Banerjee, S., Fagan, R. & Pillai, S.C. (2014). Photocatalytic activity indicator inks for probing a wide range of surfaces. J. Photochem. Photobiol., A. 290 63-71. DOI: 10.1016/j.jphotochem.2014.06.007.10.1016/j.jphotochem.2014.06.007Search in Google Scholar

29. Mills, A., O’Rourke, C., Lawrie, K. & Elouali, S. (2014). Assessment of the Activity of Photocatalytic Paint Using a Simple Smart Ink Designed for High Activity Surfaces. ACS Appl. Mater. Inter. 6, 545-552. DOI: 10.1021/am4046074.10.1021/am404607424320729Search in Google Scholar

30. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Pillai, S.C., Leyland, N.S., Fagan, R., Neumann, F., Lampe, C. & Graumann, T. (2013). A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces, J. Photoch. Photobio. A. 272, 18-20. DOI: 10.1016/j.jphotochem.2013.08.004.10.1016/j.jphotochem.2013.08.004Search in Google Scholar

31. Tryba, B., Wróbel, R., Homa, P. & Morawski, A. (2015). Improvement of photocatalytic activity of silicate paints by removal of K2SO4. Atmos. Environ. 115, 47-52. DOI: 10.1016/j. atmosenv.2015.05.047.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering